3 Закон ньютона определение

Третий закон Ньютона

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона — дифференциальный закон движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил. Один из трёх законов Ньютона.

Второй закон Ньютона в его наиболее распространённой формулировке утверждает: в инерциальных системах ускорение, приобретаемое материальной точкой (телом), прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки (тела).

В приведённой формулировке второй закон Ньютона справедлив только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

В инерциальной системе отсчета производная импульса материальной точки по времени равна действующей на него силе[2].

где P — импульс (количество движения) тела, t — время, а d/dt — производная по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.

1.13. Сила трения

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел.

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя. Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону (рис. 1.13.1).

Рисунок 1.13.1.

Сила трения покоя (υ = 0). 

Сила трения покоя не может превышать некоторого максимального значения (Fтр)max. Если внешняя сила больше (Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя. Эта модель силы сухого трения применяется при решении многих простых физических задач (рис. 1.13.2).

Рисунок 1.13.2.

Реальная (1) и идеализированная (2) характеристики сухого трения

Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры 

Fтр = (Fтр)max = μN.

Коэффициент пропорциональности μ называют коэффициентом трения скольжения.

Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости (рис. 1.13.3).

Рисунок 1.13.3.

Силы трения при скольжении (υ ≠ 0).  – сила реакции опоры,  – вес тела, 

При движении твердого тела в жидкости или газе возникает силa вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.

Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях Fтр ~ υ, при больших скоростях Fтр ~ υ2. При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.

Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ.

Открыт Ньютоном в 1667 году на основе анализа движения планет (з-ныКеплера) и, в частности, Луны. В этом же направлении работали Р.Гук (оспаривал приоритет) и Р.Боскович.

Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Закон справедлив для: 1. Однородных шаров.

2. Для материальных точек.

3. Для концентрических тел.

Гравитационное взаимодействие существенно при больших массах.

Примеры:      

 Притяжение электрона к протону в атоме водорода    210-11 Н.

Тяготение между Землей и Луной 21020 Н.

Тяготение между Солнцем и Землей  3,51022 Н.

Применение: 1. Закономерности движения планет и их спутников. Уточнены законы Кеплера.

2. Космонавтика. Расчет движения спутников.

Внимание!: 1. Закон не объясняет причин тяготения, а только устанавливает количественные закономерности.

2. В случае взаимодействия трех и более тел задачу о движении тел нельзя решить в общемвиде. Требуется учитывать "возмущения", вызванные другими телами (открытие Нептуна Адамсом и Леверье в 1846 г. и Плутона в 1930).

3. В случае тел произвольной формы требуется суммировать взаимодействия между малыми частями каждого тела.

Анализ закона:

1. Сила направлена вдоль прямой, соединяющей тела.

2. G - постоянная всемирного тяготения (гравитационная постоянная). Числовое значение зависит от выбора системы единиц.

В Международной системе единиц (СИ)        G=6,67.10-11.

G=6,67.10-11

Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798 г.

Пусть m1=m2=1 кг, R=1 м, тогда: G=F (численно).

Физический смысл гравитационной постоянной:

гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

То, что гравитационная постоянная G очень мала показывает, что интенсивность гравитационного взаимодействия мала.

Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

Причины отказа механики

Прогиб

Коррозия

Пластическая деформация

Усталость материала

Удар

Трещина

Плавление

Износ

Шаблон: Просмотр • Обсуждение • Править

Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия(другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.

Работа и мощность

Для характеристики действующей на тело силы F используется величина, называемая механической работой. Пусть под действием постоянной силыF тело переместилось из положения 1 в положение 2 (см. рис. 1). Перемещение характеризуется вектором S. Работой силы F на перемещении S называется скалярная величина, определяемая равенством:A = F · S ·cos. 1 Дж = 1 Н·м.

Свойства работы:

Сила перпендикулярная перемещению работы не производит.

Работа результирующей силы равна сумме работ составляющих сил.

Работа на перемещении S равна сумме работ на отдельных участках этого перемещения.

Работу силы F при перемещении можно вычислить графически. Как следует из определения работы, ее значение равно площади закрашенного прямоугольника (см. рис. 2).

Точно также определяется величина работы для переменной силы, изменяющейся по более сложным законам. На рис. 3 поясняется графический смысл работы переменной силы F, направленной вдоль осиOX.

Пример. Вычисление работы силы упругости (см. рис. 4). A = F·x/2.

Интенсивность совершения силой работы характеризуется мощностью N.Мощностью (средней мощностью) называется величина, определяемая равенством N = A/t, где t – время действия силы. Очевидно, что N = F · V·cos. Это выражение справедливо также для расчета мгновенного значения мощности. Единица измерения мощности – Ватт. 1 Вт = 1 Дж/с.

Работа переменной силы в общем случае вычисляется посредством интегрирования:

Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения.

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

Физический смысл

Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:

 — есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что ,Получим:

Если система замкнута, то есть , то, а величина

остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где:

  • — масса тела

  • — скорость центра масс тела

  • — момент инерции тела

  • — угловая скорость тела.

[править]Физический смысл работы

Работа всех сил, действующих на частицу, идёт на приращение кинетической энергии частицы:

[править]Релятивизм

При скоростях, близких к скорости света, кинетическая энергия любого объекта равна

где:

— масса объекта;

— скорость движения объекта в инерциальной системе отсчета;

— скорость света в вакууме ( — энергия покоя).

Данную формулу можно переписать в следующем виде:

При малых скоростях () последнее соотношение переходит в обычную формулу .

[править]Соотношение кинетической и внутренней энергии

Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров), то тело неподвижно как единое целое, и можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — Постоянная Больцмана.

Потенциальнаяэнергия  — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[1]. Термин «потенциальная энергия» был введен в XIX веке шотландскиминженером и физиком Уильямом Ренкином.

Единицей измерения энергии в СИ является Джоуль, в СГС — эрг.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называютсяконсервативными.

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где —масса тела, —ускорение свободного падения, — высота положенияцентра масс тела над произвольно выбранным нулевым уровнем.

потенциальная энергия упругой деформации

Содержание

Величина

Наименование

Растяжение или сжатие пружины приводит к запасанию ее потенциальной энергии упругой деформации. Возвращение пружины к положению равновесия приводит к высвобождению запасенной энергии упругой деформации. Величина этой энергии равна:

Потенциальная энергия упругой деформации.. - работа силы упругости и изменение потенциальной энергии упругой деформации.

А - работа силы упругости

Дж

k - жесткость пружины

Н/м

Ep - энергия упругой деформации

Дж

x - величина деформации

м

Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.

StudFiles.ru

Законы Ньютона это:

Законы Ньютона
 Просмотр этого шаблона  Классическая механика

Второй закон Ньютона
История…
Фундаментальные понятия
Пространство · Время · Масса · Сила
Энергия · Импульс
Формулировки
Ньютоновская механика
Лагранжева механика
Гамильтонова механика
Формализм Гамильтона — Якоби
Разделы
Прикладная механика
Небесная механика
Механика сплошных сред
Геометрическая оптика
Статистическая механика
Учёные
Галилей · Кеплер · Ньютон
Эйлер · Лаплас · Д’Аламбер
Лагранж · Гамильтон · Коши
См. также: Портал:Физика

Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).

Содержание

  • 1 Первый закон Ньютона
    • 1.1 Современная формулировка
    • 1.2 Историческая формулировка
  • 2 Второй закон Ньютона
    • 2.1 Современная формулировка
    • 2.2 Историческая формулировка
  • 3 Третий закон Ньютона
    • 3.1 Современная формулировка
    • 3.2 Историческая формулировка
  • 4 Выводы
  • 5 Комментарии к законам Ньютона
    • 5.1 Сила инерции
    • 5.2 Законы Ньютона и Лагранжева механика
    • 5.3 Решение уравнений движения
  • 6 Исторический очерк
  • 7 См. также
  • 8 Примечания
  • 9 Ссылки
  • 10 Литература

Первый закон Ньютона

Основная статья: Инерция

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

Современная формулировка

В современной физике первый закон Ньютона принято формулировать в следующем виде[1]:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).

Историческая формулировка

Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.

Второй закон Ньютона

Основная статья: Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где  — ускорение материальной точки;
 — сила, приложенная к материальной точке;
 — масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

где  — импульс точки,

где  — скорость точки;

 — время;
 — производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

или

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Историческая формулировка

Исходная формулировка Ньютона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Интересно, что если добавить требование инерциальной системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.

Историческая формулировка

Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.

Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость[2].

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, если потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел , то возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

Комментарии к законам Ньютона

Сила инерции

Законы Ньютона справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона: , где - это ускорение, наблюдаемое в рассматриваемой системе отсчёта, и - ускорение данной точки этой неинерциальной системы отсчёта относительно любой инерциальной системы отсчёта. Однако часто, для упрощения рассмотрения, вводят фиктивную «силу инерции» , и тогда эти уравнения движения переписываются в виде, идентичном второму закону Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального воздействия на тело. Ещё раз подчеркнём: «сила инерции» — это лишь удобная параметризация того, как отличается движение в инерциальной и неинерциальной системах отсчета.

Законы Ньютона и Лагранжева механика

Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), и из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами). Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

Решение уравнений движения

Уравнение является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию(перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

Исторический очерк

Страница «Начал» Ньютона с аксиомами механики

Основные законы механики Ньютон сформулировал в своей книге «Математические начала натуральной философии» в следующем виде.

   1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Оригинальный текст  (лат.)

   LEX I
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quantenus a viribus impressis cogitur statum illum mutare.

   LEX II
Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam qua vis illa imprimitur.

   LEX III
Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

— «Начала», страница 12

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес).

Завершили математизацию механики Эйлер и Лагранж.

См. также

  • Закон всемирного тяготения
  • Закон вязкости Ньютона
  • Ньютоновская механика

Примечания

  1. Яворский Б.М., Селезнев Ю.А. Физика. Справочное руководство. 5-ое изд. Физматлит, 2006. с.39
  2. Матвеев А.Н. Механика и теория относительности. — 3-е изд. — М. Высшая школа 1976. — С. 132.

Ссылки

  • Первый закон Ньютона (видеоурок, программа 9 класса)

Литература

  • Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
  • Спасский Б. И.. История физики. М., «Высшая школа», 1977.
    • Том 1. Часть 1-я; Часть 2-я
    • Том 2. Часть 1-я; Часть 2-я
  • Кокарев С. С. Три лекции о законах Ньютона. Ярославль. Сб. трудов РНОЦ Логос, вып. 1, 45-72, 2006.
  • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
 Просмотр этого шаблона Небесная механика Законы и задачи Небесная сфераПараметры орбитДвижение
небесных тел
Астродинамика Космический полётОрбиты КА
Законы Ньютона • Закон всемирного тяготения • Законы Кеплера • Задача двух тел • Задача трёх тел • Гравитационная задача N тел • Задача Бертрана • Уравнение Кеплера
Система небесных координат: галактическая • горизонтальная • первая экваториальная • вторая экваториальная • эклиптическая • Международная небесная система координат • Сферическая система координат • Ось мира • Небесный экватор • Прямое восхождение • Склонение • Эклиптика • Равноденствие • Солнцестояние • Фундаментальная плоскость
Кеплеровы элементы орбиты: эксцентриситет • большая полуось • средняя аномалия • долгота восходящего узла • аргумент перицентра • Апоцентр и перицентр • Орбитальная скорость • Узел орбиты • Эпоха
Движение Солнца и планет по небесной сфере • Эфемериды
Конфигурации планет: противостояние • квадратура • парад планет • Кульминация • Сидерический период • Орбитальный резонанс • Период вращения • Предварение равноденствий • Синодический период • Сближение
Затмение: солнечное затмение • лунное затмение • сарос • Метонов цикл • Покрытие • Прохождение • Либрация • Элонгация • Эффект Козаи • Эффект Ярковского • Эффект Джанибекова
Космическая скорость: первая (круговая) • вторая (параболическая) • третья • четвёртая
Формула Циолковского • Гравитационный манёвр • Гомановская траектория • Метод оскулирующих элементов • Приливное ускорение • Изменение наклонения орбиты • Стыковка • Точки Лагранжа • Эффект «Пионера»
Геостационарная орбита • Гелиоцентрическая орбита • Геосинхронная орбита • Геоцентрическая орбита • Геопереходная орбита • Низкая опорная орбита • Полярная орбита • Тундра-орбита • Солнечно-синхронная орбита • Молния-орбита • Оскулирующая орбита
Категория:
  • Законы классической механики

Wikimedia Foundation. 2010.

dic.academic.ru

Второй закон Ньютона

Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона.

Объектом, о котором идёт речь во втором законе Ньютона, является материальная точка, обладающая неотъемлемым свойством — инерцией[1], величина которой характеризуется массой. В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами[2][3][4][5].

Второй закон Ньютона в его наиболее распространённой формулировке, справедливой для скоростей, много меньших скорости света, утверждает: в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

Второй закон Ньютона в классической механике

Возможные формулировки

  • В своём труде «Математические начала натуральной философии» Исаак Ньютон приводит следующую формулировку[6] своего закона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

  • Современная формулировка:

В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

Обычно этот закон записывается в виде формулы: a → = F → m , {\displaystyle {\vec {a}}={\frac {\vec {F}}{m}},} где a → {\displaystyle {\vec {a}}} — ускорение тела, F → {\displaystyle {\vec {F}}} — сила, приложенная к телу, а m {\displaystyle \ m} — масса материальной точки. Или в ином виде: m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}}
  • Формулировка второго закона Ньютона с использованием понятия импульса:

В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе[7].

d p → d t = F → , {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}},} где p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} — импульс (количество движения) точки, v → {\displaystyle {\vec {v}}} — её скорость, а t {\displaystyle t} — время.

При такой формулировке, как и ранее, полагают, что масса материальной точки неизменна во времени[8][9][10].

Иногда в рамках классической механики предпринимались попытки распространить сферу применения уравнения d p → d t = F → {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходилось существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила[11][12].

Уравнения, соответствующие данному закону, называются уравнениями движения материальной точки.

При независимом выборе единиц массы, силы и ускорения выражение второго закона нужно писать в виде

m a → = k F → , {\displaystyle m{\vec {a}}=k{\vec {F}},}

где k {\displaystyle k} — коэффициент пропорциональности, значение которого определяется выбором единиц измерения[13][14][15][16].

Логическая роль второго закона

В ньютоновском изложении классической механики законы Ньютона ниоткуда не «выводятся», они имеют статус аксиом, базирующихся на совокупности экспериментальных фактов.

Основная идея второго закона состоит в утверждении о линейности соотношения «сила—ускорение», то есть что именно эти величины (а не, скажем, сила и скорость) и именно таким образом (а не квадратично и т. п.) связаны между собой. Во многих практических и учебных задачах второй закон Ньютона позволяет вычислять силу. Но данный закон не является определением силы (высказывание типа «по определению, сила есть произведение массы на ускорение» неуместно), иначе он превратился бы в тавтологию. Реально, второй закон Ньютона вводит массу как меру инертности тела — коэффициент пропорциональности в указанном соотношении.

В случае отсутствия воздействия на тело со стороны других тел ( F → = 0 {\displaystyle {\vec {F}}=0} ), из второго закона Ньютона следует, что ускорение тела равно нулю. Отсюда может показаться, что первый закон Ньютона входит во второй как его частный случай. Однако, это не так, поскольку первый закон по сути постулирует существование инерциальных систем отсчёта. Соответственно, первый закон Ньютона формулируется независимо от второго[17].

О неинерциальных системах

Второй закон Ньютона выполняется только в инерциальных системах отсчёта[18][19]. Тем не менее, добавляя к силам со стороны других тел силы инерции, для описания движения в неинерциальных системах отсчёта можно пользоваться уравнением второго закона Ньютона[20]. С учётом сил инерции для неинерциальной системы отсчёта уравнение второго закона Ньютона выполняется в той же форме, что и для инерциальной системы: масса тела, умноженная на его ускорение относительно неинерциальной системы отсчёта, равна по величине и направлению равнодействующей всех сил, включая и силы инерции, приложенные к телу[21][22].

Второй закон за пределами классической механики

В релятивистской динамике

Второй закон Ньютона в виде m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}} приближённо справедлив только для скоростей, много меньших скорости света, и в инерциальных системах отсчёта.

В виде d p → d t = F → {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} второй закон Ньютона точно справедлив также в инерциальных системах отсчёта специальной теории относительности и в локально инерциальных системах отсчёта общей теории относительности, однако при этом вместо прежнего выражения для импульса используется равенство p → = m v → 1 − v 2 c 2 {\displaystyle {\vec {p}}={\frac {m{\vec {v}}}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}}} , где c {\displaystyle c} — скорость света[23].

Существует и четырёхмерное релятивистское обобщение второго закона Ньютона. Производная четырёхимпульса P → {\displaystyle {\vec {\mathrm {P} }}} по собственному времени τ {\displaystyle \tau } материальной точки равна четырёхсиле Φ → {\displaystyle {\vec {\Phi }}} [24]:

Φ → = d P → d τ {\displaystyle {\vec {\Phi }}={\frac {d{\vec {\mathrm {P} }}}{d\tau }}} .

В квантовой механике

Второй закон Ньютона применим при определённых условиях и к движению волнового пакета в квантовой механике. Если потенциальная энергия волнового пакета пренебрежимо мало изменяется в области нахождения пакета, то производная по времени среднего значения импульса пакета будет равно силе, понимаемой как градиент потенциальной энергии, взятый с обратным знаком (теорема Эренфеста).

Видоизменённый второй закон Ньютона используется и при описании движения электронов в кристаллической решетке. В этом случае взаимодействие электрона с периодическим электромагнитным полем кристаллической решетки учитывается введением понятия эффективной массы.

Научно-историческое значение закона

Оценивая значение второго закона Ньютона, А. Эйнштейн писал:

Дифференциальный закон является той единственной формой причинного объяснения, которая может полностью удовлетворять современного физика. Ясное понимание дифференциального закона есть одно из величайших духовных достижений Ньютона… Только переход к рассмотрению явления за бесконечно малое время (т. е. к дифференциальному закону) позволил Ньютону дать формулировку, пригодную для описания любого движения… Так Ньютон пришёл… к установлению знаменитого закона движения:

Вектор ускорения × Масса = Вектор силы. Это — фундамент всей механики и, пожалуй, всей теоретической физики.

Эйнштейн А. Собрание научных трудов. — М.: Наука, 1967. — Т. 4. — С. 82, 92. — 599 с. — 31 700 экз.

Лагранжево обобщение второго закона Ньютона

Из уравнений Лагранжа для произвольной голономной системы, на которую действуют как потенциальные, так и непотенциальные обобщенные силы d d t ( ∂ L ∂ q ˙ i ) − ∂ L ∂ q i = Q i {\displaystyle {\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {q}}_{i}}}\right)-{\frac {\partial L}{\partial q_{i}}}=Q_{i}} следует, что производная по времени обобщённого импульса p i = ∂ L ∂ q ˙ i {\displaystyle p_{i}={\frac {\partial L}{\partial {\dot {q}}_{i}}}} равна сумме потенциальных и непотенциальных обобщённых сил Q i ∗ = ∂ L ∂ q i + Q i {\displaystyle Q_{i}^{*}={\frac {\partial L}{\partial q_{i}}}+Q_{i}} :

p ˙ i = Q i ∗ {\displaystyle {\dot {p}}_{i}=Q_{i}^{*}} .

Теорема об изменении обобщённого импульса обобщает и включает как частные случаи теоремы ньютоновской динамики об изменении количества движения и об изменении кинетического момента[25].

ru.wikipedia.org

Напишите пожалуйста 3 закона Ньютона, кратко, и более понятно.

Ирэн

Первый закон Ньютона (закон инерции).
Первый закон гласит, что всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
Суть данного закона изложил еще в 16 веке Галилео Галилей, но Ньютон более глубоко рассмотрел понятие движения со всех точек зрения (в том числе и с филосовской стороны в своем трактате «Математические начала натуральной философии»).
Однажды, когда ученый сидел в саду под деревом, рядом с ним упало яблоко. «Почему яблоки всегда падают перпендикулярно земле?» — подумал он. Так по легенде был открыт закон всемирного тяготения.
Второй закон Ньютона (основной закон динамики).
Второй закон гласит, что изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
Выражаясь более простыми словами, ускорение, приобретаемое телом прямо пропорционально равнодействующей силе и обратно пропорционально массе самого тела. Ускорение при этом направленно в сторону силы, действующей на материальную точку.
Третий закон Ньютона (закон взаимодействия тел).
Любому действию есть соответствующее противодействие - слова, известные каждому. В этом и заключается третий закон Ньютона. При любом взаимодействии двух тел возникают силы, действующие на оба тела.
Третий закон гласит, что действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Дайте определения 3-х законов Ньютона более короткой и понятной фразой_напр. 3-й "всякое действие есть взаимодействие"

Genareck

1 закон - Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
2 закон - В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
3 закон - Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению.
Мне кажется, что все 3 законы легки для понимания!

Александр скобелев

Третий закон просто : сила действия направленных вдоль одной прямой равна силе противодействия
формула F=-F
Второй
Сила действующая на тело равна произведению массы тела на ускорение формула F=ma если тело свободно падает ускорение заменяется ускорением свободного падения равным 9,8 метров на секунду в квадрате F=mg

А про инерциальные системы отсчета надо просто запомнить из учебника

Читайте также