Селекция ее практическое значение

Селекция - что такое? Селекция растений и животных

Основоположником понятия «селекция» является Чарльз Дарвин, который смог описать роль наследственной изменчивости и искусственного отбора в создании и выведении новых пород и сортов.

Что такое селекция

селекция что такое

Определение формулируется так: "Селекция – это наука, изучающая методы создания и улучшения сортов культурных растений, пород домашних животных и штаммов микроорганизмов".

Сорт или порода – это созданная человеком в искусственных условиях популяция, которая имеет для человека неоценимую пользу: обладает полезными наследственными признаками, высокой продуктивностью, нужными физиологическими и морфологическими параметрами.

что такое селекция животных

Селекция (что такое она значит - подробно изучает биология) характеризуется появлением пород домашних животных, а также новых сортов культурных растений, возникших в результате искусственного отбора, который может проводить только человек.

Культурные формы характеризуются тем, что у них очень сильно развиты определенные признаки, с которыми организму трудно существовать в естественное среде, но для человека они полезны. Ярким примером является возможность курицы дать триста яиц за год. В природе такая особенность птицы бессмысленна, так как курица не сможет высидеть триста яиц.

Исторические факты

В начале своего существования была методом искусственного отбора селекция. Что такое кропотливый многолетний труд, направленный на получение определенного полезного признака - знают только сами селекционеры. До семнадцатого века селекционный отбор был бессознательным. Например, человек выбирал самые крупные семена для получения хорошего урожая, не задумываясь при этом, что растение уже меняется в нужном для человека направлении.

что такое селекция в биологии определение

И только около ста последних лет человек начал, еще не изучая принципы и законы генетики, целенаправленно и сознательно скрещивать такие растения, которые максимально удовлетворяли человеческие желания и потребности.

Но только лишь методом искусственного отбора человек не мог создать новые виды живых организмов. Используя такой метод, можно выделить только те генотипы, которые уже существуют в популяции. Именно поэтому в настоящее время используется гибридизация, позволяющая получить абсолютно новые сорта растений и породы животных.

Что такое селекция растений

Самыми главными методами селекции растений являются гибридизация и отбор. Для перекрестноопыляемых растений применяется массовый отбор нужных свойств. Иначе нельзя получить материал, необходимый для дальнейших работ. Благодаря такому методу можно получить новые сорта перекрестноопыляемых растений (например, ржи). Такие сорта не будут генетически однородными. А вот для получения чистой линии учеными применяется индивидуальный отбор, во время которого в результате самоопыления можно получить качественные экземпляры с необходимыми характеристиками и признаками.

что такое селекция растений

Для селекции растений очень часто применяют экспериментальную полиплоидию, так как каждый полиплоид характеризуется высокой урожайностью, большими размерами и сравнительно быстрым ростом.

Существует также метод искусственного мутагенеза, который был рассмотрен Вавиловым. Организм, поддавшийся мутации и получивший новые свойства, называется мутантом, а сам процесс преображения – мутацией.

Особенности селекции животных

Что такое селекция животных - ответить не сложно. Она очень сходна с селекцией растений, но все же имеет и некоторые особенности. Нужно учитывать, что для животных характерно только половое размножение. Из-за очень редкой смены поколений (у многих животных через несколько лет) число особей в потомстве крайне небольшое. Именно поэтому, проводя селекционные работы, ученые должны проводить анализ всех внешних признаков, характерных для определенной породы.

Одомашнивание

Что такое селекция в биологии? Определение дается в школьной программе. Самым важным достижением человечества было одомашнивание диких животных более десяти тысяч лет назад. Таким образом, у людей появился постоянный источник пищи.

что такое селекция объектов стандартизации

Для домашних животных характерно наличие особенных признаков, которые очень часто вредны для естественного существования, а вот для человека имеют неоценимое положительное значение. Фактором одомашнивания является искусственный отбор особей, которые отвечают требованиям человека. Люди выбирали животных, имевших хороший вид, более спокойный характер и другие важные для человека качества.

После бессознательного появился методический отбор. Его цель – сформировать у животных нужные и полезные качества.

 что такое селекция в биологии

Метод одомашнивания новых животных практикуется человеком и сейчас. Это нужно ему, например, для получения качественной пушнины. Таким образом появилась новая отрасль хозяйства – пушное звероводство.

Скрещивание и отбор

Селекция (что такое она значит для человечества - вы можете узнать, прочитав эту статью) рассматривает и такой метод, как скрещивание животных. Это делается для улучшения внешнего вида, качества мяса или повышения жирности молока. Особи, которых разводят, оцениваются не только по их внешнему виду, но и по качеству их потомства. Именно поэтому очень важно изучать их родословную.

На данный момент существует два вида скрещивания: аутбридинг и инбридинг. Первый тип характеризуется скрещиванием особей не только одной, но и разных пород. Дальнейший строгий отбор способен поддерживать полезные качества и увеличивать их количество у потомства.

Во время инбридинга используются родители и потомство, или братья и сестры. Благодаря такому скрещиванию повышается гомозиготность и закрепляются ценные признаки у потомства.

Отдаленная гибридизация имеет сравнительно низкий эффект, ведь межвидовые гибриды животных чаще всего являются бесплодными.

Что такое селекция объектов стандартизации? Данное понятие характеризует деятельность, которая заключается в отборе определенных объектов, признанных годными для их дальнейшего производства, и применения во всех сферах человеческой жизни.

Селекция микроорганизмов

Микроорганизмы играют очень важную роль в биосфере, и непосредственно в жизни человека. Человечество использует несколько сотен микроорганизмов, и их число растет с каждым годом.

Селекция микроорганизмов характеризуется рядом особенностей. У селекционеров в запасе бесконечное количество материала. Так как ген любого микроорганизма гаплоидный, ученые могут выявить мутацию еще в первом поколении. У бактерий сравнительно малое количество генов, поэтому и работы проводить намного проще и быстрее.

 что такое селекция определение

Бактерии могут самостоятельно производить полезные для человека вещества, и это их свойство использует микроорганизмов селекция. Что такое метод генной инженерии в этой ее отрасли? Это совокупность воздействий, провоцирующая бактерии продуцировать такие соединения, которые в естественных условиях не вырабатываются.

Иногда селекционеры используют трансдукцию – переносят из одной бактерии в другую нужные ДНК и таким образом повышают значимость микроорганизмов для окружающей среды.

Важный метод селекционных работ с микроорганизмами – гибридизация разных штаммов. Такой метод позволяет объединить материалы, которые не могут встретиться в природе.

Как ведутся селекционные работы

Что такое селекция в биологии? Определение позволяет узнать о новых улучшенных сортах, штаммах и популяциях живых организмов. На сегодняшний день все селекционные работы ведутся с учетом того, что нужно сельскохозяйственному рынку и производству. Например, ученые разработали уникальную технологию утилизации нефтепродуктов, с возможностью превратить их в белково-витаминный полезный продукт. Такое достижение возникло благодаря селекции штаммов бактерий.

Что такое селекция в биологии? Очень важное направление прикладной науки, которое позволяет получить человеку качественные продукты питания и новые виды современного производства.

fb.ru

Основные методы селекции

Главным методом селекции является искусственный отбор, гибридизация, мутагенез, полиплоидия.

ОСНОВНЫЕ МЕТОДЫ СЕЛЕКЦИИ

Скрещивание (гибридизация) Искусственный мутагенез Искусственный отбор Полиплоидия
Близкородственное (имбридинг) Неродственное (аутбридинг) Массовый (без учета родословной) Индивидуальный (с учетом родословной)
Внутрипородное (внутрисортовое) – для закрепления признаков, размножения породы (сорта) Межпородное (межсортовое) – для получения новых признаков Отдаленная гибридизация – скрещивание представителей разных видов

Искусственный отбор предполагает целенаправленное создание новых форм растений и животных с использованием методов селекции и различных технологий. При массовом отборе из исходного материала выделяют группу особей, обладающих желательными признаками, а при индивидуальном – отдельных особей, также с желательными признаками, с целью получения от них потомства.

Гибридизация – это процесс получения гибридов от двух отличающихся по генотипу родительских организмов, размножающихся половым путем. Все созданные гибриды характеризуются гетерозиготностью по многим генам. При этом первое поколение гибридов обычно характеризуется высокой жизнеспособностью, большей плодовитостью и более значительными размерами по сравнению с родительскими формами.

Явление превосходства первого поколения гибридов по ряду признаков и свойств над обеими родительскими формами называется гетерезисом. В дальнейшем, при скрещивании гибридов между собой, эффект гетерезиса ослабляется и исчезает.

Мутагенез – это процесс возникновения наследственных изменений (мутаций) под влиянием различных физических и химических факторов (мутагенов). В селекции этот процесс носит искусственный характер – организм целенаправленно подвергается действию мутагенов с целью получения новых, полезных для человека свойств.

Полиплоидия– наследственное изменение, характеризующиеся кратным увеличением гаплоидного набора хромосом в клетках организма. Большинство культурных растений полиплоидны, так как содержат более двух наборов хромосом. Полиплоидия возникает в результате нарушения расхождения хромосом в митозе или мейозе под действием факторов внешней среды. Полиплоиды характеризуются более крупными размерами, устойчивостью к неблагоприятным условиям окружающей среды, повышением содержания ряда веществ, ценных в хозяйственном отношении.

studopedia.ru

Тема 9: Генетические основы селекции

1. Структура современной селекции

2. Теория селекционного процесса

3. Искусственный отбор

4. История селекции в России

5. Частная селекция растений, животных и микроорганизмов

1. Структура современной селекции

Селекция (от лат. selectio, seligere – отбор) – это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Современная селекция – это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохозяйственной продукции и ее комплексной переработки.

В ходе селекции происходят устойчивые наследственные преобразования различных групп организмов. По образному выражению Н.И. Вавилова, «…селекция представляет собой эволюцию, направляемую волей человека». Известно, что достижения селекции широко использовал Ч. Дарвин при обосновании основных положений эволюционной теории.

Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции

- Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

- Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

- Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

- Повышение потребительских качеств продукции.

- Уменьшение доли побочных продуктов и их комплексная переработка.

- Уменьшение доли потерь от вредителей и болезней.

Структура современной селекции

Учение о современной селекции было нашим выдающимся соотечественником – агрономом, ботаником, географом, путешественником, всемирно признанным авторитетом в области генетики, селекции, растениеводства, иммунитета растений, крупным организатором сельскохозяйственной и биологической науки в нашей стране – Николаем Ивановичем Вавиловым (1887–1943). Многие хозяйственно-полезные признаки являются генотипически сложными, обусловленными совместным действием многих генов и генных комплексов. Необходимо выявить эти гены, установить характер взаимодействия между ними, иначе селекция может вестись вслепую. Поэтому Н.И. Вавилов утверждал, что именно генетика является теоретической основой селекции.

Н.И. Вавилов выделил следующие разделы селекции:

1) учение об исходном сортовом, видовом и родовом потенциалах;

2) учение о наследственной изменчивости (закономерности в изменчивости, учение о мутациях);

3) учение о роли среды в выявлении сортовых признаков (влияние отдельных факторов среды, учение о стадиях в развитии растений применительно к селекции);

4) теория гибридизации как в пределах близких форм, так и отдаленных видов;

5) теория селекционного процесса (самоопылители, перекрестноопылители, вегетативно и апогамно размножающиеся растения);

6) учение об основных направлениях в селекционной работе, таких, как селекция на иммунитет, на физиологические свойства (холодостойкость, засухоустойчивость, фотопериодизм), селекция на технические качества, химический состав;

7) частная селекция растений, животных и микроорганизмов.

Учение Н.И. Вавилова о центрах происхождения культурных растений

Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости – основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр – включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Не менее одной четверти населения земного шара до сих пор живет в тропической Азии. В прошлом относительная населенность этой территории была еще более значи­тельной. Из этого центра ведет начало около одной трети возделываемых в настоящее время растений. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский центр – включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Японию и большую часть о. Тайвань. На этой территории живет примерно также около одной четверти населения Земли. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр – включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора которого, как показали исследования, генетически связана с Передней Азией. Родина мягких пшениц, ржи, овса, ячменя, гороха, дыни.

Этот центр может быть подразделен на следующие очаги:

а) Кавказский со множеством оригинальных видов пшеницы, ржи и плодовых. По пшенице и ржи, как выяснено сравнительными исследованиями, это наиболее важный мировой очаг их видового происхождения;

б) Переднеазиатский, включающий Малую Азию, Внутреннюю Сирию и Палестину, Трансиорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркестаном;

в) Северо-западноиндийский, включающий помимо Пенджаба и примыкающих провинций Северной Индии и Кашмира также Белуджистан и Южный Афганистан.

Около 15% всей мировой культурной флоры ведет начало с этой территории. В исключительном видовом разнообразии здесь сосредоточены дикие родичи пшеницы, ржи и различных европейских плодовых. До сих пор здесь можно проследить для многих видов непрерывный ряд от культурных до диких форм, т. е. установить сохранившиеся связи диких форм с культурными.

4. Средиземноморский центр – включает страны, расположенные по берегам Средиземного моря. Этот замечательный географический центр, характеризующийся в прошлом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов культурных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур.

5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абиссинией, не превышает 4% мировой культурной флоры. Абиссиния характеризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, хлебный злак тэфф (Eragrostis abyssinica), своеобразное масличное растение нуг (Guizolia ahyssinica), особый вид банана.

В пределах Нового Света установлена поразительно строгая локализация двух центров видообразования главнейших культурных растений.

6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага:

а) Горный южномексиканский,

б) Центральноамериканский,

в) Вест-Индский островной.

Из Центральноамериканского центра ведет начало около 8% различных возделываемых растений, таких, как кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст.

Как видно из перечня географических центров, начальное введение в культуру подавляющего числа возделываемых растений связано не только с флористическими областями, отличающимися богатой флорой, но и с древнейшими цивилизациями. Лишь сравнительно немногие растения введены в прошлом в культуру из дикой флоры вне перечисленных основных географических центров. Семь указанных географических центров соответствуют древнейшим земледельческим культурам. Южноазиатский тропический центр связан с высокой древнеиндийской и индокитайской культурой. Новейшие раскопки показали глубокую древность этой культуры, синхронной передне-азиатской. Восточноазиатский центр связан с древней китайской культурой, а Юго-западно-азиатский — с древней культурой Ирана, Малой Азии, Сирии, Палестины и Ассиро-Вавилонии. Средиземноморье за много тысячелетий до нашей эры сосредоточило этрусскую, эллинскую и египетскую культуры. Своеобразная абиссинская культура имеет глубокие корни, вероятно совпадающие по времени с древней египетской культурой. В пределах Нового Света Центрально-американский центр связан с великой культурой майя, достигшей до Колумба огромных успехов в науке и искусстве. Андийский центр в Южной Америке сочетается в развитии с замечательной доинкской и инкской цивилизациями.

Н.И. Вавилов выделил группу вторичных культур, которые произошли от сорняков: рожь, овес и др. Н.И. Вавилов установил, что «важным моментом при оценке материала для селекции является наличие в нем разнообразия наследственных форм». Н.И. Вавилов различал следующие группы исходных сортов: местные сорта, иноземные и инорайонные сорта. При разработке теории интродукции (внедрения) инорайонных и иноземных сортов «необходимо отличать первичные очаги формообразования от вторичных». Например, в Испании обнаружено «исключительно большое число разновидностей и видов пшениц», однако это объясняется «привлечением сюда многих видов из разных очагов». Н.И. Вавилов придавал большое значение новым гибридным формам. Разнообразие генов и генотипов в исходном материале Н.И. Вавилов назвал генетическим потенциалом исходного материала.

Развитие учения Н.И. Вавилова о центрах происхождения культурных растений.

К сожалению, многие идеи Н.И. Вавилова не были в должной мере оценены современниками. Лишь во второй половине XX века крупные центры по сохранению генофонда культурных растений и их диких сородичей были созданы на Филиппинах, в Мексике, в Колумбии и других зарубежных странах.

Во второй половине XX в. появились новые данные о распределении культурных растений. С учетом этих данных академик П.М. Жуковский развил учение Н.И. Вавилова о центрах происхождения культурных растений. Он создал теорию мегацентров (генетических центров, или генцентров), объединяющих первичные и вторичные очаги происхождения культурных растений, а также их некоторых дикорастущих сородичей. В своей книге «Мировой генофонд растений для селекции» (1970) П.М. Жуковский выделил 12 мегацентров: Китайско-Японский, Индонезийско-индокитайский, Австралийский, Индостанский, Среднеазиатский, Переднеазиатский, Средиземноморский, Африканский, Европейско-сибирский, Среднеамериканский, Южноамериканский, Североамериканский. Перечисленные мегацентры занимают обширные географические регионы (например, к Африканскому центру отнесена вся территория Африки к югу от Сахары). В то же время, П.М. Жуковский выделил 102 микрогенцентра, в которых обнаружены отдельные формы растений. Например, родиной душистого горошка – популярного декоративного растения – является о. Сицилия; из некоторых районов Грузии происходят уникальные формы пшениц, в частности, пшеница Зандури, представляющая собой надвидовой комплекс, устойчивый к многим грибковым заболеваниям (кроме того, среди этих пшениц обнаружены формы с цитоплазматической мужской стерильностью).

Закон гомологических рядов

Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов (1920 г.):

1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Согласно этому закону, у генетически близких видов и родов существуют близкие гены, которые дают сходные серии множественных аллелей и вариантов признака.

Теоретическое и практическое значение закона гомологических рядов:

- Н.И. Вавилов четко разграничил внутривидовую и межвидовую изменчивость. При этом вид рассматривался как целостная, исторически сложившаяся система.

- Н.И. Вавилов показал, что внутривидовая изменчивость небезгранична и подчиняется определенным закономерностям.

- Закон гомологических рядов является руководством для селекционеров, позволяя предсказать возможные варианты признаков.

Н. И. Вавилов впервые осуществил целенаправленный поиск редких или мутантных аллелей в природных популяциях и популяциях культурных растений. В наше время продолжается поиск мутантных аллелей для повышения продуктивности штаммов, сортов и пород.

Выявление уровня биологического разнообразия и его сохранение

Для отыскания центров разнообразия и богатства растительных форм Н.И. Вавилов многочисленные экспедиции, которые за 1922…1933 гг. побывали в 60 странах мира, а также в 140 районах нашей страны.

Важно подчеркнуть, что поиски культурных растений и их диких сородичей шли не вслепую, как в большинстве стран, в том числе и в США, а опирались на стройную строгую теорию центров происхождения культурных растений, разработанную Н.И. Вавиловым. Если до него ботаники-географы искали «вообще» родину пшеницы, то Вавилов искал центры происхождения отдельных видов, групп видов пшеницы в различных областях земного шара. При этом особо важно было выявить области естественного распространения (ареалы) разновидностей данного вида и определить центр наибольшего разнообразия его форм (ботанико-географический метод). Чтобы установить географическое распределение разновидностей и рас культурных растений и их диких родичей, Н.И. Вавилов изучал очаги древнейшей земледельческой культуры, начало которой он видел в горных районах Эфиопии, Передней и Средней Азии, Китая, Индии, в Андах Южной Америки, а не в широких долинах крупных рек – Нила, Ганга, Тигра и Евфрата, как утверждали ученые прежде.

В результате экспедиций был собран ценный фонд мировых растительных ресурсов, насчитывающий свыше 250000 образцов. Подобная коллекция была создана и в США, однако она значительно уступала вавиловской коллекции и по числу образцов, и по видовому составу.

Коллекционные образцы, собранные под руководством Н.И. Вавилова, хранились в Ленинграде во Всесоюзном институте растениеводства (ВИРе), созданном Н.И. Вавиловым в 1930 г. на основе Всесоюзного института прикладной ботаники и новых культур (ранее – Отдела прикладной ботаники и селекции, еще ранее – Бюро по прикладной ботанике). В годы Великой Отечественной войны во время блокады Ленинграда сотрудники ВИРа несли круглосуточное дежурство при коллекции семян зерновых культур. Многие сотрудники ВИРа умерли голодной смертью, но бесценное видовое и сортовое богатство, из которого и поныне селекционеры всего мира черпают материал для создания новых сортов и гибридов, было сохранено.

Во второй половине XX столетия были организованы новые экспедиции по сбору образцов для пополнения коллекции ВИРа; в настоящее время эта коллекция насчитывает до 300 тысяч образцов растений, принадлежащим к 1740 видам.

Для хранения исходного материала в живом виде используются разнообразные насаждения: коллекционные питомники, коллекционно-маточные, маточные и производственные плантации. Для сохранения коллекционных образцов используются самые разнообразные методы: хранение семян с периодическим пересевом, хранение замороженных образцов (черенков, почек), поддержание тканево-клеточных культур. В 1976 г. на Кубани было построено Национальное хранилище семян для генофонда ВИРа, вместимостью 400 тысяч образцов. В этом хранилище семена хранятся при строго определенной температуре, позволяющей сохранить всхожесть и предотвратить накопление мутаций, в т.ч. при температуре жидкого азота (–196 °С).

Планомерное изучение мировых растительных ресурсов важнейших культурных растений коренным образом изменило представление о сортовом и видовом составе даже таких хорошо изученных культур, как пшеница, рожь, кукуруза, хлопчатник, горох, лен и картофель. Среди видов и множества разновидностей этих культурных растений, привезенных из экспедиций, почти половина оказались новыми, еще не известными науке. Собранная богатейшая коллекция тщательно изучается с применением самых современных методов селекции, генетики, биотехнологии, а также с помощью географических посевов.

Снижение генетического разнообразия на популяционном уровне – знамение нашего времени

Многие современные сорта растений (зернобобовых культур, кофейного дерева и др.) ведут начало от немногих особей-основателей. На грани вымирания находятся сотни пород домашних животных. Например, развитие промышленного птицеводства привело к резкому сокращению породного состава кур во всем мире: наибольшее распространение получили всего лишь 4…6 из известных 600 пород и разновидностей. Та же ситуация характерна для других сельскохозяйственных видов. Значительную роль в процессе снижения уровня разнообразия играет нерациональное ведение хозяйства, игнорирующее эволюционно сложившуюся системную организацию как природных, так и сельскохозяйственных популяций, их естественную подразделенность на генетически отличающиеся субпопуляции. Идеи Н.И. Вавилова о необходимости выявления и сохранения разнообразия были развиты в работах А.С. Серебровского, С.С. Четверикова и других отечественных ученых. Методы селекции, направленные на сохранение биологического разнообразия, будут рассмотрены ниже.

В настоящее время исходным материалом для селекции признаются:

- Сорта и породы, возделываемые и разводимые в настоящее время.

- Сорта и породы, вышедшие из производства, но представляющие большую генетическую и селекционную ценность по отдельным параметрам.

- Местные сорта и аборигенные породы.

- Дикие сородичи культурных растений и домашних животных: виды, подвиды, экотипы, разновидности, формы.

- Дикие виды растений и животных, перспективные для введения в культуру и доместикации. Известно, что в настоящее время культивируется всего лишь 150 видов сельскохозяйственных растений и 20 видов домашних животных. Таким образом, огромнейший видовой потенциал диких видов остается неиспользованным.

- Экспериментально созданные генетические линии, искусственно полученные гибриды и мутанты.

В наше время общепризнанно, что в качестве исходного материала должен использоваться как местный, так и инорайонный исходный материал. Исходный материал должен быть достаточно разнообразен: чем больше его разнообразие, тем больше возможность выбора. В то же время, исходный материал должен быть максимально приближен к идеальному образу (модели) результата селекции – сорта, породы, штамма (см. ниже). В настоящее время продолжается поиск мутантных аллелей для повышения продуктивности сортов, пород и штаммов.

Индуцированный мутагенез.

Экспериментальное получение мутаций у растений и микроорганизмов и их использование в селекции

Эффективными способами получения исходного материала являются методы индуцированного мутагенеза – искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина).

Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1…3 до 10…15 и даже 50…100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01…0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников).

Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят о соматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках.

Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда.

Полиплоидия в селекции используется для достижения следующих целей:

- получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции;

- восстановление плодовитости у межвидовых гибридов;

- перевод гаплоидных форм на диплоидный уровень.

В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др.

StudFiles.ru

Генетические основы селекции

1. Структура современной селекции

Селекция(от лат.selectio,seligere– отбор) – это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Современная селекция – это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохозяйственной продукции и ее комплексной переработки.

В ходе селекции происходят устойчивые наследственные преобразования различных групп организмов. По образному выражению Н.И. Вавилова, «…селекция представляет собой эволюцию, направляемую волей человека». Известно, что достижения селекции широко использовал Ч. Дарвин при обосновании основных положений эволюционной теории.

Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции

- Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

- Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

- Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

- Повышение потребительских качеств продукции.

- Уменьшение доли побочных продуктов и их комплексная переработка.

- Уменьшение доли потерь от вредителей и болезней.

История современной селекции

Учение о современной селекции было создано нашим выдающимся соотечественником – агрономом, ботаником, географом, путешественником, всемирно признанным авторитетом в области генетики, селекции, растениеводства, иммунитета растений, крупным организатором сельскохозяйственной и биологической науки в нашей стране – Николаем Ивановичем Вавиловым (1887–1943). Многие хозяйственно-полезные признаки являются генотипически сложными, обусловленными совместным действием многих генов и генных комплексов. Необходимо выявить эти гены, установить характер взаимодействия между ними, иначе селекция может вестись вслепую. Поэтому Н.И. Вавилов утверждал, что именно генетика является теоретической основой селекции.

Н.И. Вавилов выделил следующие разделы селекции:

1) учение об исходном сортовом, видовом и родовом потенциалах;

2) учение о наследственной изменчивости (закономер­ности в изменчивости, учение о мутациях);

3) учение о роли среды в выявлении сортовых призна­ков (влияние отдельных факторов среды,  учение о стадиях в развитии растений применитель­но к селекции);

4) теория гибридизации как в пределах близких форм, так и отдаленных видов;

5) теория селекционного процесса (самоопылители, перекрестноопылители, вегетативно и апогамно раз­множающиеся растения);

6) учение об основных направлениях в селекционной работе, таких, как селекция на иммунитет, на физиологические свойства (холодостой­кость, засухоустойчивость, фотопериодизм), селекция на технические качества, химический состав;

7) частная селекция растений, животных и микроорганизмов.

Учение Н.И. Вавилова о центрах происхождения культурных растений

Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости – основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр – включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Не менее одной четверти населе­ния земного шара до сих пор живет в тропичес­кой Азии. В прошлом относительная населен­ность этой территории была еще более значи­тельной. Из этого центра ведет начало около одной трети возделываемых в настоящее время растений. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский  центр – включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Япо­нию и большую часть о. Тайвань. На этой терри­тории живет примерно также около одной четверти населения Земли. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр – включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора кото­рого, как показали исследования, генетически связана с Передней Азией. Родина мягких пшениц, ржи, овса, ячменя, гороха, дыни.

Этот центр может быть подразделен на следующие очаги:

а) Кавказскийсо множеством оригинальных видов пшеницы, ржи и плодовых. По пшенице и ржи, как выяснено сравнительными исследова­ниями, это наиболее важный мировой очаг их видового происхождения;

б) Переднеазиатский,включающий Малую Азию, Внутреннюю Сирию и Палестину, Транс­иорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркеста­ном;

в) Северо-западноиндийский,включающий помимо Пенджаба и примыкающих провинций Северной Индии и Кашмира также Белуджистан и Южный Афганистан.

Около 15% всей мировой культурной флоры ведет начало с этой территории. В исключительном видовом разно­образии здесь сосредоточены дикие родичи пше­ницы, ржи и различных европейских плодовых. До сих пор здесь можно проследить для многих видов непрерывный ряд от культурных до диких форм, т. е. установить сохранившиеся связи диких форм с культурными.

4. Средиземноморский центр – включает страны, расположенные по берегам Средиземного моря. Этот замечательный гео­графический центр, характеризующийся в прош­лом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов куль­турных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур.

5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абисси­нией, не превышает 4% мировой культурной флоры. Абиссиния харак­теризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, хлебный злак тэфф (Eragrostisabyssinica), своеобразное масличное растение нуг(Guizoliaahyssinica),особый вид банана.

В пределах Нового Света установлена порази­тельно строгая локализация двух центров видо­образования главнейших культурных растений.

6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага:

а) Горный южномексиканский,

б) Центральноамериканский,

в) Вест-Индский островной.

Из Центральноамериканского центра ведет начало около 8% различных возделываемых рас­тений, таких, как кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский  центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст.

Как видно из перечня географических цент­ров, начальное введение в культуру подавля­ющего числа возделываемых растений связано не только с флористическими областями, отли­чающимися богатой флорой, но и с древнейшими цивилизациями. Лишь сравнительно немногие растения введены в прошлом в культуру из дикой флоры вне перечисленных основных географи­ческих центров. Семь указанных географичес­ких центров соответствуют древнейшим земле­дельческим культурам. Южноазиатский тропический центр связан с высокой древнеиндийской и индокитайской куль­турой. Новейшие раскопки показали глубокую древность этой культуры, синхронной передне-азиатской. Восточноазиатский центр связан с древней китайской культурой, а Юго-западно-азиатский — с древней культурой Ирана, Малой Азии, Сирии, Палестины и Ассиро-Вавилонии. Средиземноморье за много тысячелетий до нашей эры сосредоточило этрусскую, эллинскую и египетскую культуры. Своеобразная абиссин­ская культура имеет глубокие корни, вероятно совпадающие по времени с древней египетской культурой. В пределах Нового Света Цент­рально-американский центр связан с великой культурой майя, достигшей до Колумба огром­ных успехов в науке и искусстве. Андийский центр в Южной Америке сочетается в развитии с замечательной доинкской и инкской цивилиза­циями.

Н.И. Вавилов выделил группу вторичных культур, которые произошли от сорняков: рожь, овес и др. Н.И. Вавилов установил, что «важным моментом при оценке материала для селекции является наличие в нем разнообразия наследственных форм». Н.И. Вавилов различал следующие группы исходных сортов: местные сорта, иноземные и инорайонные сорта. При разработке теории интродукции (внедрения) инорайонных и иноземных сортов «необходимо отличать первичные очаги формообразования от вторичных». Например, в Испании обнаружено «исключительно большое число разновидностей и видов пшениц», однако это объясняется «привлечением сюда многих видов из разных очагов». Н.И. Вавилов придавал большое значение новым гибридным формам. Разнообразие генов и генотипов в исходном материале Н.И. Вавилов назвал генетическим потенциаломисходного материала.

Развитие учения Н.И. Вавилова о центрах происхождения культурных растений.

К сожалению, многие идеи Н.И. Вавилова не были в должной мере оценены современниками. Лишь во второй половине XXвека крупные центры по сохранению генофонда культурных растений и их диких сородичей были созданы на Филиппинах, в Мексике, в Колумбии и других зарубежных странах.

Во второй половине XX в. появились новые данные о распределении культурных растений. С учетом этих данных академик П.М. Жуковский развил учение Н.И. Вавилова о центрах происхождения культурных растений. Он создал теорию мегацентров (генетических центров, или генцентров), объединяющих первичные и вторичные очаги происхождения культурных растений, а также их некоторых дикорастущих сородичей. В своей книге «Мировой генофонд растений для селекции» (1970) П.М. Жуковский выделил 12 мегацентров: Китайско-Японский, Индонезийско-индокитайский, Австралийский, Индостанский, Среднеазиатский, Переднеазиатский, Средиземноморский, Африканский, Европейско-сибирский, Среднеамериканский, Южноамериканский, Североамериканский. Перечисленные мегацентры занимают обширные географические регионы (например, к Африканскому центру отнесена вся территория Африки к югу от Сахары). В то же время, П.М. Жуковский выделил 102 микрогенцентра, в которых обнаружены отдельные формы растений. Например, родиной душистого горошка – популярного декоративного растения – является о. Сицилия; из некоторых районов Грузии происходят уникальные формы пшениц, в частности, пшеница Зандури, представляющая собой надвидовой комплекс, устойчивый к многим грибковым заболеваниям (кроме того, среди этих пшениц обнаружены формы с цитоплазматической мужской стерильностью).

Закон гомологических рядов

Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов(1920 г.):

1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Согласно этому закону, у генетически близких видов и родов существуют близкие гены, которые дают сходные серии множественных аллелей и вариантов признака. Например, в пределах разных родов злаков существует параллельная изменчивость окраски зерна:

Варианты

окраски зерна

Роды злаков

Рожь

Пшеница

Ячмень

Овес

Просо

Белое

есть

есть

есть

есть

есть

Красное

есть

есть

есть

нет

нет

Зеленое

есть

есть

есть

есть

есть

Черное

есть

есть

есть

нет

нет

Фиолетовое

есть

есть

есть

нет

нет

Теоретическое и практическое значение закона гомологических рядов:

-     Н.И. Вавилов четко разграничил внутривидовую и межвидовую изменчивость. При этом вид рассматривался как целостная, исторически сложившаяся система.

-     Н.И. Вавилов показал, что внутривидовая изменчивость небезгранична и подчиняется определенным закономерностям.

-     Закон гомологических рядов является руководством для селекционеров, позволяя предсказать возможные варианты признаков.

Н. И. Вавилов впервые осуществил целенаправленный поиск редких или мутантных аллелей в природных популяциях и популяциях культурных растений. В наше время продолжается поиск мутантных аллелей для повышения продуктивности штаммов, сортов и пород.

Выявление уровня биологического разнообразия и его сохранение

Для отыскания центров разнообразия и богатства растительных форм Н.И. Вавилов многочисленные экспедиции, которые за 1922…1933 гг. побывали в 60 странах мира, а также в 140 районах нашей страны.

Важно подчеркнуть, что поиски культур­ных растений и их диких сородичей шли не вслепую, как в большин­стве стран, в том числе и в США, а опирались на стройную строгую теорию центров происхожде­ния культурных растений, разработанную Н.И. Вавиловым. Если до него ботаники-географы искали «вообще» родину пшеницы, то Вавилов искал центры происхождения отдельных видов, групп видов пшеницы в различных областях земного шара. При этом особо важно было выявить области естественного распространения (ареалы) разновидностей данного вида и определить центр наибольшего разнообразия его форм (ботанико-географический метод). Чтобы установить географическое распределение разновидностей и рас культурных растений и их диких родичей, Н.И. Вавилов изучал очаги древнейшей земледельческой культуры, начало которой он видел в горных районах Эфиопии, Передней и Средней Азии, Китая, Индии, в Андах Южной Америки, а не в широких долинах крупных рек – Нила, Ганга, Тигра и Евфрата, как утверждали ученые прежде.

В результате экспедиций был собран ценный фонд мировых растительных ресурсов, насчитывающий свыше 250000 образцов. Подобная коллекция была создана и в США, однако она значительно уступала вавиловской коллекции и по числу образцов, и по видовому составу.

Коллекционные образцы, собранные под руководством Н.И. Вавилова, хранились в Ленинграде во Всесоюзном институте растениеводства (ВИРе), созданном Н.И. Вавиловым в 1930 г. на основе Всесоюзного института прикладной ботаники и новых культур (ранее – Отдела прикладной ботаники и селекции, еще ранее – Бюро по прикладной ботанике). В годы Великой Отечественной войны во время блокады Ленинграда сотрудники ВИРа несли круглосуточное дежурство при коллекции семян зерновых культур. Многие сотрудники ВИРа умерли голодной смертью, но бесценное видовое и сортовое богатство, из которого и поныне селекционеры всего мира черпают материал для создания новых сортов и гибридов, было сохранено.

Во второй половине XXстолетия были организованы новые экспедиции по сбору образцов для пополнения коллекции ВИРа; в настоящее время эта коллекция насчитывает до 300 тысяч образцов растений, принадлежащим к 1740 видам.

Для хранения исходного материала в живом виде используются разнообразные насаждения: коллекционные питомники, коллекционно-маточные, маточные и производственные плантации. Для сохранения коллекционных образцов используются самые разнообразные методы: хранение семян с периодическим пересевом, хранение замороженных образцов (черенков, почек), поддержание тканево-клеточных культур. В 1976 г. на Кубани было построено Национальное хранилище семян для генофонда ВИРа, вместимостью 400 тысяч образцов. В этом хранилище семена хранятся при строго определенной температуре, позволяющей сохранить всхожесть и предотвратить накопление мутаций, в т.ч. при температуре жидкого азота (–196 °С).

Планомерное изучение мировых растительных ресурсов важнейших культурных растений коренным образом изменило представление о сорто­вом и видовом составе даже таких хорошо изученных культур, как пше­ница, рожь, кукуруза, хлопчатник, горох, лен и картофель. Среди видов и множества разновидностей этих культурных растений, привезенных из экспедиций, почти половина оказались новыми, еще не известными науке. Собран­ная богатейшая коллекция тщательно изучается с применением самых современных методов селекции, генетики, биотехнологии, а также с помощью географических посевов.

Снижение генетического разнообразия на популяционном уровне – знамение нашего времени

Многие современные сорта растений (зернобобовых культур, кофейного дерева и др.) ведут начало от немногих особей-основателей. На грани вымирания находятся сотни пород домашних животных. Например, развитие промышленного птицеводства привело к резкому сокращению породного состава кур во всем мире: наибольшее распространение получили всего лишь 4…6 из известных 600 пород и разновидностей. Та же ситуация характерна для других сельскохозяйственных видов. Значительную роль в процессе снижения уровня разнообразия играет нерациональное ведение хозяйства, игнорирующее эволюционно сложившуюся системную организацию как природных, так и сельскохозяйственных популяций, их естественную подразделенность на генетически отличающиеся субпопуляции. Идеи Н.И. Вавилова о необходимости выявления и сохранения разнообразия были развиты в работах А.С. Серебровского, С.С. Четверикова и других отечественных ученых. Методы селекции, направленные на сохранение биологического разнообразия, будут рассмотрены ниже.

В настоящее время исходным материалом для селекции признаются:

-     Сорта и породы, возделываемые и разводимые в настоящее время.

-     Сорта и породы, вышедшие из производства, но представляющие большую генетическую и селекционную ценность по отдельным параметрам.

- Местные сорта и аборигенные породы.

-     Дикие сородичи культурных растений и домашних животных: виды, подвиды, экотипы, разновидности, формы.

-     Дикие виды растений и животных, перспективные для введения в культуру и доместикации. Известно, что в настоящее время культивируется всего лишь 150 видов сельскохозяйственных растений и 20 видов домашних животных. Таким образом, огромнейший видовой потенциал диких видов остается неиспользованным.

- Экспериментально созданные генетические линии, искусственно полученные гибриды и мутанты.

В наше время общепризнанно, что в качестве исходного материала должен использоваться как местный, так и инорайонный исходный материал. Исходный материал должен быть достаточно разнообразен: чем больше его разнообразие, тем больше возможность выбора. В то же время, исходный материал должен быть максимально приближен к идеальному образу (модели) результата селекции – сорта, породы, штамма (см. ниже). В настоящее время продолжается поиск мутантных аллелей для повышения продуктивности сортов, пород и штаммов.

Индуцированный мутагенез.

Экспериментальное получение мутаций у растений и микроорганизмов и их использование в селекции

Эффективными способами получения исходного материала являются методы индуцированного мутагенеза– искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина).

Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1…3 до 10…15 и даже 50…100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01…0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1(первое мутантное поколение). ВM1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2(втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников).

Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят осоматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках.

Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда.

Полиплоидия в селекции используется для достижения следующих целей:

- получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции;

- восстановление плодовитости у межвидовых гибридов;

- перевод гаплоидных форм на диплоидный уровень.

В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др.

StudFiles.ru

Селекции и ее задачи

Вадим соколов

Селекция, ее задачи.

Этапы становления селекции. Отбор как основной метод селекции

Что такое селекция? Каково ее значение для народного хозяйства страны?

Термин селекция имеет два близких по смыслу значения:

1. Под селекцией понимают процесс создания новых пород животных, сортов растений и штаммов микроорганизмов с выгодными для человека качествами и свойствами. В этом смысле селекция, как процесс, началась еще в доисторические времена, с того момента, когда людям удалось приручить первых диких животных и начать высаживать первые растения.

2. Селекция наука, занимающаяся разработкой теоретических основ и методов создания новых пород животных, сортов растений и штаммов микроорганизмов. В этом смысле селекция начала существовать сравнительно недавно, с середины XIX в. , так как теоретической базой селекции являются генетика и эволюционная теория.

Благодаря работе селекционеров многих поколений в разных странах мира человечеству удалось добиться больших успехов. В конце XX в. появился даже термин зеленая революция по отношению к высокопродуктивным сортам, созданным в результате селекции растений. Продуктивность этих растений превосходит результаты предыдущей селекционной работы в десятки и сотни раз. Использование некоторых из таких сортов зерновых (рис, пшеница) на территории Индии позволило решить проблему голода. Не стоит забывать, что значительная часть человечества (около 30%) до сих пор недоедает, т. е. питание не соответствует физиологическим потребностям организма. В связи с этим первоочередная задача селекционеров создание таких высокопродуктивных сортов растений и пород животных, которые смогли бы решить проблему голода без дополнительных затрат и нагрузки на окружающую среду. Ведь под агроценозы (сельскохозяйственные земли) и техногенные ландшафты (города, дороги, шахты, промышленные объекты) заняты уже огромные территории. Освоение природных ресурсов такими же темпами может привести к нарушению экологического равновесия и истощению природных ресурсов.

Создание высокопродуктивных штаммов микроорганизмов находит применение в фармакологии. Антибиотики пенициллинового ряда — результат деятельности штаммов плесневых грибов.

Совершенно фантастические перспективы открывает перед человечеством генная инженерия.

Искусственный отбор как основной метод селекции. Основным методом селекции был и остается искусственный отбор. Человек всегда предпочитал оставлять для разведения животных и растения, которые обладали лучшими качествами и свойствами. Долгое время этот процесс велся бессознательно, не методично, хотя еще в античные времена люди старались отбирать лучших из лучших и проводить скрещивания между ними. Такие манипуляции не всегда приводили к желаемым результатам. В селекции растений преобладал массовый отбор, т. е. на поле засевали лучшие семена, а из их потомков опять отбирались лучшие из лучших.
Настоящий большой шаг вперед удалось сделать, когда метод отбора дополнился методом подбора производителей. Метод анализа производительных качеств родителей по потомству был разработан династией французских селекционеров Вильморен.

Династия Вильморен потомственные селекционеры. Основоположник селекции Филипп Виктуар (17461804), его внук Луи (18161860), правнук Анри (18431899). Фирма «ВильморенАнри» ввела в культуру Франции свыше 450 сортов культурных растений.

В основе этого метода лежит индивидуальное скрещивание и отслеживание у потомков передачи полезных качеств. Этот вид искусственного отбора называется индивидуальным. Таким образом удается установить, насколько ценен тот или иной экземпляр растений или животных. Особь оценивается не только с позиций обладания полезными качествами, но и (что более важно) как носитель этих качеств, передающий их потомству. Ведь и элитные родители могут дать потомство низкого качества. Причинами могут быть рецессивные гены, проявляющиеся в следующих поколениях, и многое другое.

S.Lana klemenova

Селекция – это наука о методах создания новых и улучшении существующих пород животных, сортов культурных растений и штаммов микроорганизмов с ценными для человека признаками и свойствами
Основные задачи селекции определил
Н. И. Вавилов
Задачи
1.Повышение урожайности сортов и продуктивности животных
2.Повышение устойчивости к заболеваниям
3. Повышение качества продукции
4.Пригодность для механизированного или промышленного
выращивания и разведения
5.Экологическая пластичность сортов и пород

Читайте также