91 Средняя ошибка средней величины. Методика расчета при большой и малой выборке.
При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки. Такие ошибки носят название случайных ошибок репрезентативности (m),
На практике для определения средней ошибки выборки при проведении статистических исследований, используются следующие Формулы:
1) для расчета средней ошибки (mм) средней величины (М):
, где σ - среднее квадратическое отклонение;
n - численность выборки.
Это при большой выборке, а при малой n-1
92 Среднее квадратичное отклонение. Методика вычисления, применение в деятельности врача.
Приближенный метод оценки колеблемости вариационного ряда - это определение лимита, т.е. минимального и максимального значения количественного признака, и амплитуды - т.е. разности между наибольшим и наименьшим значением вариант (Vmax - Vmin). Однако лимит и амплитуда не учитывают значений вариант внутри ряда.
Основной общепринятой мерой колеблемости количественного признака в пределах вариационного ряда является среднее квадратическое отклонение (σ - сигма).
σ |
= |
252 |
= |
2,6 |
95 |
Так, например, при изучении средней длительности лечения больных в двух больницах были получены следующие результаты:
Больница 1 |
Больница 2 |
Μ = 20 дней |
Μ = 20 дней |
σ = 3 дня |
σ = 5 дней |
Средняя длительность лечения в обеих больницах одинакова, однако во второй больнице колебания были значительнее.
Методика расчета среднего квадратического отклонения включает следующие этапы:
1. Находят среднюю арифметическую величину (Μ).
2. Определяют отклонения отдельных вариант от средней арифметической (V-M=d). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех отклонений равняется нулю (графа 3. табл. 5).
3. Возводят каждое отклонение в квадрат (графа 4. табл. 5).
4. Перемножают квадраты отклонений на соответствующие частоты d2*p (графа 5, табл. 5).
5. Вычисляют среднее квадратическое отклонение по формуле:
при n больше 30,или
. при n меньше либо равно 30, где n - число всех вариант
Методика расчета среднего квадратического отклонения приведена в таблице 5.
Среднее квадратическое отклонение позволяет установить степень типичности средней, пределы рассеяния ряда, сравнить колеблемость нескольких рядов распределения. Величина среднего квадратического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратическое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv), представляющий собой относительную величину: процентное отношение среднего квадратического отклонения к средней арифметической.
Таблица 5
Число дней V |
Число больных Ρ |
d |
d2 |
d2*p |
16 |
1 |
-4 |
16 |
16 |
17 |
7 |
-3 |
9 |
63 |
18 |
8 |
-2 |
4 |
32 |
19 |
16 |
-1 |
1 |
16 |
20 |
29 |
0 |
0 |
0 |
21 |
20 |
1 |
1 |
20 |
22 |
7 |
2 |
4 |
28 |
23 |
5 |
3 |
9 |
45 |
24 |
2 |
4 |
16 |
32 |
М=20 n=95 Σ=252
Коэффициент вариации вычисляется по формуле:
Cv |
= |
σ * 100 |
Μ |
Пример: по данным специального исследования средний рост мальчиков 7 лет в городе N составил 117.7 см (σ=5.1 см), а средний вес - 21,7 кг (σ=2,4 кг). Оценить колеблемость роста и веса путем сравнения средних квадратических отклонений нельзя, т. к. вес и рост - величины именованные. Поэтому используется относительная величина - коэффициент вариации:
,
Сравнение коэффициентов вариации роста (4.3%) и веса (11.2%) показывает, что вес имеет более высокий коэффициент вариации,следовательно,является менее устойчивым признаком.
Чем выше коэффициент вариации, тем большая изменчивость данного ряда. Считают, что коэффициент вариации свыше 30 % свидетельствует о качественной неоднородности совокупности.
Средние величины широко применяются в повседневной работе медицинских работников. Они используются для характеристики Физического развития, основных антропометрических признаков: рост, вес. окружность груди, динамометрия и т.д. Средние величины применяются для оценки состояния больного путем анализа физиологических, биохимических сдвигов в организме: уровня артериального давления, частоты сердечных сокращений. температуры тела, уровня биохимических показателей, содержания гормонов и т. д. Широкое применение средние величины нашли при анализе деятельности лечебно-профилактических учреждений, например: при анализе работы стационаров вычисляются показатели среднегодовой занятости койки, средней длительности пребывания больного на койке и т. д.
StudFiles.ru
81. Среднее квадратическое отклонение, методика расчета, применение.
Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного признака в пределах вариационного ряда является среднее квадратическое отклонение (σ- сигма). Чем больше среднее квадратическое отклонение, тем степень колеблемости данного ряда выше.
Методика расчета среднего квадратического отклонения включает следующие этапы:
1. Находят среднюю арифметическую величину (Μ).
2. Определяют отклонения отдельных вариант от средней арифметической (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех отклонений равняется нулю.
3. Возводят каждое отклонение в квадрат d2.
4. Перемножают квадраты отклонений на соответствующие частоты d2*p.
5. Находят сумму произведений ( d2*p)
6. Вычисляют среднее квадратическое отклонение по формуле:
при n больше 30,или
при n меньше либо равно 30, где n - число всех вариант.
Значение среднего квадратичного отклонения:
1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.
2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.
Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.
Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.
Установлено, что при нормальном распределении признака:
- 68,3% значений вариант находится в пределах М1
- 95,5% значений вариант находится в пределах М2
- 99,7% значений вариант находится в пределах М3
3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы.
4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды
5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.
Величина среднего квадратического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратическое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv), представляющий собой относительную величину: процентное отношение среднего квадратического отклонения к средней арифметической.
Коэффициент вариации вычисляется по формуле:
Чем выше коэффициент вариации, тем большая изменчивость данного ряда. Считают, что коэффициент вариации свыше 30 % свидетельствует о качественной неоднородности совокупности.
StudFiles.ru
81. Среднее квадратическое отклонение, методика расчета, применение.
Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного признака в пределах вариационного ряда является среднее квадратическое отклонение (σ- сигма). Чем больше среднее квадратическое отклонение, тем степень колеблемости данного ряда выше.
Методика расчета среднего квадратического отклонения включает следующие этапы:
1. Находят среднюю арифметическую величину (Μ).
2. Определяют отклонения отдельных вариант от средней арифметической (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех отклонений равняется нулю.
3. Возводят каждое отклонение в квадрат d2.
4. Перемножают квадраты отклонений на соответствующие частоты d2*p.
5. Находят сумму произведений ( d2*p)
6. Вычисляют среднее квадратическое отклонение по формуле:
при n больше 30,или
при n меньше либо равно 30, где n - число всех вариант.
Значение среднего квадратичного отклонения:
1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.
2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.
Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.
Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.
Установлено, что при нормальном распределении признака:
- 68,3% значений вариант находится в пределах М1
- 95,5% значений вариант находится в пределах М2
- 99,7% значений вариант находится в пределах М3
3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы.
4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды
5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.
Величина среднего квадратического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратическое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv), представляющий собой относительную величину: процентное отношение среднего квадратического отклонения к средней арифметической.
Коэффициент вариации вычисляется по формуле:
Чем выше коэффициент вариации, тем большая изменчивость данного ряда. Считают, что коэффициент вариации свыше 30 % свидетельствует о качественной неоднородности совокупности.
StudFiles.ru
Средняя арифметическая и средняя гармоническая величины
Сущность и значение средних величин, их виды
Наиболее распространенной формой статистического показателя является средняя величина. Показатель в форме средней величины выражает типичный уровень признака в совокупности. Широкое применение средних величин объясняется тем, что они позволяют и сравнивать значения признака у единиц, относящихся к разным совокупностям. Например, можно сравнивать среднюю продолжительность рабочего дня, средний тарифный разряд рабочих, средний уровень заработной платы по различным предприятиям.
Сущность средних величин заключается в том, что в них взаимопогашаются отклонения значений признака у отдельных единиц совокупности, обусловленные действием случайных факторов. Поэтому средние величины должны рассчитываться для достаточно многочисленных совокупностей (в соответствии с законом больших чисел). Надежность средних величин зависит также от колеблемости значений признака в совокупности. В общем случае, чем меньше вариация признака и чем больше совокупность, по которой определяется средняя величина, тем она надежнее.
Типичность средней величины непосредственным образом связана также с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности. В противном случае метод средних используется в сочетании с методом группировок. Если совокупность неоднородна, то общие средние заменяются или дополняются групповыми средними, рассчитанными по качественно однородным группам.
Выбор вида средних определяется экономическим содержание ем исследуемого показателя и исходных данных. Наиболее часто в статистике применяются следующие виды средних величин: степенные средние (арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д.), средняя хронологическая, а также структурные средние (мода и медиана).
Средняя арифметическая величина наиболее часто встречается в социально-экономических исследованиях. Средняя арифметическая применяется в форме простой средней и взвешенной средней.
Средняя арифметическая простая рассчитывается по несгруппированным данным на основании формулы (4.1):
где x- индивидуальные значения признака (варианты);
n- число единиц совокупности.
Пример. Требуется найти среднюю выработку рабочего в бригаде, состоящей из 15 человек, если известно количество изделий, произведенных одним рабочим (шт.): 21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20.
Средняя арифметическая простая рассчитывается по несгруппированным данным на основании формулы (4.2):
где f - частота повторения соответствующего значения признака (варианта);
∑f — общее число единиц совокупности (∑f = n).
Пример. На основании имеющихся данных о распределении рабочих бригады по количеству выработанных ими изделий требуется найти среднюю выработку рабочего в бригаде.
Выработка деталей одним рабочим, шт., x | Число рабочих, чел., f | xf |
ВСЕГО |
Примечание 1. Средняя величина признака в совокупности может рассчитываться как на основании индивидуальных значений признака, так и на основании групповых (частных) средних, рассчитанных по отдельным частям совокупности. При этом используется формула средней арифметической взвешенной, а в качестве вариантов значений признака рассматриваются групповые (частные) средние (xj).
Пример. Имеются данные о среднем стаже рабочих по цехам завода. Требуется определить средний стаж рабочих в целом по заводу.
Номер цеха | Средний стаж работы, лет., X | Число рабочих, чел., f |
ВСЕГО | - |
Примечание 2. В том случае, когда значения осредняемого признака заданы в виде интервалов, при расчете средней арифметической величины в качестве значений признака в группах принимают средние значения этих интервалов (х’) . Таким образом, интервальный ряд преобразуется в дискретный. При этом величина открытых интервалов, если таковые имеются (как правило, это первый и последний), условно приравнивается к величине интервалов, примыкающих к ним.
Пример. Имеются данные о распределении рабочих предприятия по уровню заработной платы.
Группы рабочих по заработной плате, тыс.руб. | Число рабочих, чел., f | Средняя заработная плата, тыс.руб. x’ | x’f |
До 250 250-350 350-450 450-550 550-650 650 и более | |||
ВСЕГО | - |
Средняя гармоническая величина является модификацией средней арифметической. Применяется в тех случаях, когда известны индивидуальные значения признака, т. е. варианты (x), и произведений вариант на частоту (xf = М), но неизвестны сами частоты (f).
Средняя гармоническая взвешенная рассчитывается по формуле (4.3):
Пример. Требуется определить средний размер заработной платы работников объединения, состоящего из трех предприятий, если известен фонд заработной платы и средняя заработная плата работников по каждому предприятию.
Предприятие | Фонд заработной платы, тыс. руб., xf | Средняя заработная плата, тыс. руб., x |
40 700 | ||
38 700 | ||
50 700 | ||
ВСЕГО | - |
Средняя гармоническая простая в практике статистики используется крайне редко. В тех случаях, когда xf = Mm = const, средняя гармоническая взвешенная превращается в среднюю гармоническую простую (4.4):
Пример. Две машины прошли один и тот же путь. При этом одна из них двигалась со скоростью 60 км/ч, вторая - со скоростью 80 км/ч. Требуется определить среднюю скорость машин в пути.
Другие виды степенных средних. Средняя хронологическая
Средняя геометрическая величина используется при расчете средних показателей динамики. Средняя геометрическая применяется в форме простой средней (для несгруппированных данных) и взвешенной средней (для сгруппированных данных).
Средняя геометрическая простая (4.5):
где n — число значений признака;
П — знак произведения.
Средняя геометрическая взвешенная (4.6):
Средняя квадратическая величина используется при расчете показателей вариации. Применяется в форме простой и взвешенной.
Средняя квадратическая простая (4.7):
Средняя квадратическая взвешенная (4.8):
Средняя кубическая величина используется при расчете показателей асимметрии и эксцесса. Применяется в форме простой взвешенной.
Средняя кубическая простая (4.9):
Средняя кубическая взвешенная (4.10) :
Средняя хронологическая величина используется для расчета среднего уровня ряда динамики (4.11):
Структурные средние
Помимо рассмотренных выше средних величин в статистике используются структурные средние, к которым относятся мода и медиана.
Модой (Мо) называется значение изучаемого признака (вариант), которое чаще всего встречается в совокупности. В дискретном ряду мода определяется достаточно просто — по максимальному показателю частоты. В интервальном вариационном ряду мода приблизительно соответствует центру модального интервала, т. е. интервала, имеющего большую частоту (частость).
Конкретное значение моды рассчитывается по формуле (4.12):
где нижняя граница модального интервала;
ширина модального интервала;
частота, соответствующая модальному интервалу;
частота интервала, предшествующего модальному;
частота интервала, следующего за модальным.
Медианой (Ме) называется значение признака, расположенное в середине ранжированного ряда. Под ранжированным понимают ряд, упорядоченный в порядке возрастания или убывания значений признака. Медиана делит ранжированный ряд на две части, одна из которых имеет значения признака не большие, чем медиана, а друга - не меньшие.
Для ранжированного ряда с нечетным числом членов медианой является варианта, расположенная в центре ряда. Положение медианы определяется порядковым номером единицы ряда в соответствии с формулой (4.13):
где n - число членов ранжированного ряда.
Для ранжированного ряда с четным числом членов медианой является среднее арифметическое из двух смежных значений, находящихся в центре ряда.
В интервальном вариационном ряду для нахождения медианы применяется следующая формула (4.14):
где нижняя граница медианного интервала;
ширина медианного интервала;
накопленная частота интервала, предшествующего медианному;
частота медианного интервала.
Пример. Рабочие бригады, состоящей из 9 чел., имеют следующие тарифные разряды: 4; 3; 4; 5; 3; 3; 6; 2;6. Требуется определить модальное и медианное значения тарифного разряда.
Поскольку в данной бригаде больше всего рабочих 3-го разряда, то этот разряд и будет модальным, т. е. Мо = 3.
Для определения медианы осуществим ранжирование исходного ряда в порядке возрастания значений признака:
2; 3; 3; 3; 4; 4; 5; 6; 6.
Центральным в этом ряду является пятое по счету значение признака. Соответственно Ме = 4.
Пример. Требуется определить модальный и медианный тарифный разряд рабочих завода по данным следующего ряда распределения.
Разряд | Кол-во рабочих, чел. | Накопленная частота S |
13+25=38 38+30=68 68+19=87 87+10=97 97+3=100 | ||
ВСЕГО |
Поскольку исходный ряд распределения является дискретным, то модальное значение определяется по максимальному показателю частоты. В данномпримере на заводе больше всего рабочих 3-го разряда (fmax = 30), т.е. этот разряд является модальным (Мо = 3).
Определим положение медианы. Исходный ряд распределения построен на основании ранжированного ряда, упорядоченного по возрастанию значений признака. Середина ряда находится между 50-м и 51-м порядковыми номерами значений признака. Выясним, к какой группе относятся рабочие с этими порядковыми номерами. Для этого рассчитаем накопленные частоты. Накопленные частоты указывают на то, что медианное значение тарифного разряда равно трем (Ме = 3), поскольку значения признака с порядковыми номерами от 39-го до 68-го, в том числе 50-е и 51-е, равны 3.
Пример. Требуется определить модальную и медианную заработную плату рабочих завода по данным следующего ряда распределения.
Размер заработной платы, тыс.руб. | Кол-во рабочих, чел. | Накопленная частота S |
1 | 2 | 3 |
180-240 240-300 300-360 360-420 420-480 480-540 540-600 | 5 15 20 30 15 10 5 | 5 20 40 70 85 95 100 |
ВСЕГО | 100 | 100 |
Поскольку исходный ряд распределения является интервальным, то модальное значение заработной платы рассчитывается по формуле. При этом модальным является интервал 360-420 с максимальной частотой, равной 30.
Медианное значение заработной платы также рассчитывается по формуле. При этом медианным является интервал 360-420, накопленная частота которого равна 70, тогда как накопленная частота предыдущего интервала составляла только 40 при общем числе единиц, равном 100.
studopedia.ru
Читайте также
Расчет среднего значения
Вифлеемская звезда подвеска значение для женщин
Герб россии описание и значение для детей
Геральдическая лилия значение тату для женщин
Захар значение имени для ребенка
Есения значение имени для девочки церковное
Документы для ветерана труда федерального значения
Веды славянские читать для женщин значение тела
Счастливые имена для мальчиков и их значение
Жесты и их значение для социализации человека
Значение имени амир для мальчика
Значение имени виталий для мальчика