Округлить до двух значащих цифр

ПРАВИЛА ОКРУГЛЕНИЯ чисел

Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример.Округление числа 132,48 до четырех значащих цифр будет 132,5.

В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Пример.Округление числа 12,23 до трех значащих цифр дает 12,2.

В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример.Округление числа 0,145 до двух значащих цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, следует поступать следующим образом:

1) если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя сохраняемая цифра сохраняется;

Пример. Округление до одной значащей цифры числа 0,15 (полученного после округления числа 0,149) дает 0,1.

2) если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие
разряды).

Пример.Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

В случае, если первая из отбрасываемых цифр (считая слева направо) больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример.Округление числа 0,156 до двух значащих цифр дает 0,16.

Округление следует выполнять сразу до желаемого количества значащих цифр, а не по этапам.

Пример.Округление числа 565,46 до трех значащих цифр производится непосредственно на 565. Округление по этапам привело бы к: 565,46 в I этапе - к 565,5, а во II этапе - 566 (ошибочно).

Целые числа округляют по тем же правилам, как и дробные.

Пример.Округление числа 12 456 до двух значащих цифр дает 12·103.

Основные правила округления при обработке результатов измерения изложены, в частности, в ГОСТ Р 8.736-2011 ГСИ. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения[2]

studopedia.ru

Задача № 1. Округление результатов измерений

Содержание

Введение.............................................................................................................

4

ЗАДАЧА № 1. Ряды предпочтительных чисел...............................................

5

ЗАДАЧА № 2. Округление результатов измерений.......................................

9

ЗАДАЧА № 3. Обработка результатов измерений.........................................

13

ЗАДАЧА № 4. Допуски и посадки гладких цилиндрических соединений...

18

ЗАДАЧА № 5. Допуски формы и расположения...........................................

24

ЗАДАЧА № 6. Шероховатость поверхности.................................................

30

ЗАДАЧА № 7. Размерные цепи........................................................................

34

Список литературы............................................................................................

43

При выполнении измерений важно соблюдать определенные правила округления и записи их результатов в технической документации, так как при несоблюдении этих правил возможны существенные ошибки в интерпретации результатов измерений.

Правила записи чисел

1. Значащие цифры данного числа - все цифры от первой слева, не равной нулю, до последней справа. При этом нули, следующие из множителя 10, не учитывают.

Примеры.

а) Число 12,0имеет три значащие цифры.

б) Число 30имеет две значащие цифры.

в) Число 120108имеет три значащие цифры.

г) 0,51410-3имеет три значащие цифры.

д) 0,0056 имеет две значащие цифры.

2. Если необходимо указать, что число является точным, после числа указывают слово "точно" или последнюю значащую цифру печатают жирным шрифтом. Например: 1 кВт / ч = 3600 Дж (точно) или 1 кВт / ч = 3600 Дж.

3. Различают записи приближенных чисел по количеству значащих цифр. Например, различают числа 2,4 и 2,40. Запись 2,4 означает, что верны только целые и десятые доли, истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли: истинное значение числа может быть 2,403 и 2,398, но не 2,41 и не 2,382. Запись 382 означает, что все цифры верны: если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8102. Если в числе 4720 верны лишь две первые цифры, оно должно быть записано в виде: 47102или 4,7103.

4. Число, для которого указывают допустимое отклонение, должно иметь последнюю значащую цифру того же разряда, как и последняя значащая цифра отклонения.

Примеры.

а) Правильно: 17,0 + 0,2. Неправильно:17 + 0,2 или 17,00 + 0,2.

б) Правильно: 12,13+0,17. Неправильно: 12,13+0,2.

в) Правильно: 46,40+0,15. Неправильно: 46,4+0,15 или 46,402+0,15.

5. Числовые значения величины и её погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы величины. Например: (80,555 +0,002) кг.

6. Интервалы между числовыми значениями величин иногда целесообразно записывать в текстовом виде, тогда предлог "от" означает "", предлог "до"– "", предлог "свыше" – ">", предлог "менее" – "

"dпринимает значения от 60 до 100" означает "60d100",

"dпринимает значения свыше 120 менее 150" означает "120 d< 150",

"dпринимает значения свыше 30 до 50" означает "30 d50".

Правила округления чисел

1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

2. В случае если первая из отбрасываемых цифр (считая слева направо) менее 5, то последнюю сохраняемую цифру не меняют.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

3. В случае если первая из отбрасываемых цифр (считая слева направо) равна 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,145 до двух цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом.

4. Если отбрасываемая цифра получена в результате округления в меньшую сторону, то последнюю оставшуюся цифру увеличивают на единицу (с переходом при необходимости в следующие разряды) , иначе – наоборот. Это касается и дробных и целых чисел.

Пример: Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

4. В случае если первая из отбрасываемых цифр (считая слева направо) более 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

5. Округление выполняют сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр дает 565.

6. Целые числа округляют по тем же правилам, что и дробные.

Пример: Округление числа 23456 до двух значащих цифр дает 23103

Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности.

Пример: Число 235,732 + 0,15 должно быть округлено до 235,73 + 0,15, но не до 235,7 + 0,15.

7. Если первая из отбрасываемых цифр (считая слева направо) меньше пяти, то остающиеся цифры не меняются.

Пример:442,749+0,4 округляется до 442,7+0,4.

8. Если первая из отбрасываемых цифр больше или равна пяти, то последняя сохраняемая цифра увеличивается на единицу.

Пример: 37,268 + 0,5 округляется до 37,3 + 0,5; 37,253 + 0,5должно быть округленодо 37,3 + 0,5.

9. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.

Пример: Поэтапное округление результата измерения 220,46+4дает на первом этапе 220,5+4 и на втором 221+4, в то время как правильный результат округления 220+4.

10. Если погрешность средств измерения указывается всего с одной или двумя значащими цифрами, а рассчетное значение погрешности получают с большим числом знаков, в окончательном значении рассчитанной погрешности должны быть оставлены соответственно только первые одна или две значащие цифры. При этом, если полученное число начинается с цифр 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 3050 %), что недопустимо. Если же полученное число начинается с цифры 3 и более, например, с цифры 9, то сохранение второго знака, т.е. указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

Исходя из этого на практике установилось такое правило: если полученное число начинается со значащей цифры, равной или большей 3, то в нем сохраняется лишь она одна; если же оно начинается со значащих цифр, меньших 3, т.е. с цифр 1 и 2, то в нем сохраняют две значащих цифры. В соответствии с этим правилом установлены и нормируемые значения погрешностей средств измерений: в числах 1,5 и 2,5 % указываются две значащих цифры, но в числах 0,5; 4; 6 % указывается лишь одна значащая цифра.

Пример: На вольтметре класса точности 2,5с пределом измерений хК  = 300 В был получен отсчет измеряемого напряжения х = 267,5В. В каком виде должен быть записан результат измерения в отчете?

Расчет погрешности удобнее вести в следующем порядке: вначале необходимо найти абсолютную погрешность, а затем – относительную. Абсолютная погрешность х = 0хК/100, для приведенной погрешности вольтметра 0 = 2,5 % и пределов измерения (диапазона измерения) прибора хК = 300 В: х = 2,5300/100 = 7,5 В ~ 8 В; относительная погрешность  = х100/х = 7,5100/267,5 = 2,81 % ~ 2,8 % .

Так как первая значащая цифра значения абсолютной погрешности (7,5 В) больше трех, то это значение должно быть округлено по обычным правилам округления до 8 В, но в значении относительной погрешности (2,81 %) первая значащая цифра меньше 3, поэтому здесь должны быть сохранены в ответе два десятичных разряда и указано  = 2,8 %. Полученное значение х = 267,5 В должно быть округлено до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности, т.е. до целых единиц вольт.

Таким образом, в окончательном ответе должно быть сообщено: "Измерение произведено с относительной погрешностью = 2,8 % . Измеренное напряжениеХ= (268+8) В".

При этом более наглядно указать пределы интервала неопределенности измеренной величины в виде Х= (260276) В или 260 ВX276 В.

StudFiles.ru

1.3.2. Правила округления значения погрешности и записи

результата измерений

Погрешность результата измерений позволяет определить те цифры результата, которые являются достоверными. При расчете величины погрешности, особенно с помощью калькуляторов, значение погрешности получается с большим числом знаков. Это создает впечатление о высокой точности измерений, что не соответствует действительности, так как исходными данными для расчета чаще всего являются нормируемые значения погрешности используемого СИ, которые указываются всего с одной или двумя значащими цифрами. Вследствие этого и в окончательном значении рассчитанной погрешности не следует удерживать более двух значащих цифр. В метрологии существуют следующие правила:

1. Погрешность результата измерения указывается двумя значащими цифрами, если первая из них 3 или меньше, и одной - если первая цифра есть 4 и более.

Значащими цифрами числа считаются все цифры от первой слева, не равной нулю, до последней справа цифры, при этом нули, записанные в виде множителя 10n, не учитываются.

2. Результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности. (Например, результат 85.6342, погрешность 0.01. Результат округляют до 85.63. Тот же результат при погрешности в пределах 0.012 следует округлить до 85.634).

3. Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним - двумя лишними знаками.

4. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление приводит к ошибкам.

При округлении числовых значений погрешности и результата измерений необходимо руководствоваться следующими общими правилами округления.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются. (Например, число 165245 при сохранении четырех значащих цифр округляется до 165200, а число 165.245 - до 165.2).

Если десятичная дробь оканчивается нулями, они отбрасываются только до разряда, который соответствует разряду погрешности. (Например, результат измерений 235.200, погрешность 0.05. Результат округляют до 235.20. Тот же результат при погрешности в пределах 0.015 следует округлить до 235.200).

Если первая (считая слева направо) из заменяемых нулями или отбрасываемых цифр меньше 5, остающиеся цифры не изменяются.

Если первая из этих цифр равна 5, а за ней не следует никаких цифр, или идут нули, то, если последняя цифра в округляемом числе четная или нуль, она остается без изменения, если нечетная - увеличивается на единицу. (Например, число 1234.50 округляют до 1234, а число 8765.50 - до 8766).

Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. (Например, число 6783.6 при сохранении четырех значащих цифр, округляют до 6784, а число 12.34520 - до 12.35).

Особенно внимательно следует относиться к записи результата измерения без указания погрешности, так как записи результата 2.4 103 В и 2400В не являются тождественными. Первая запись означает, что верны цифры тысяч и сотен вольт и истинное значение может находиться в интервале от 2.351кВ до 2.449кВ. Запись 2400 означает, что верны и единицы вольт, следовательно истинное значение напряжения может находиться в интервале от 2399.51В до 2400.49В.

Поэтому запись результата без указания погрешности крайне нежелательна.

Окончательно правила записи результата измерений можно сформулировать следующим образом.

1) При промежуточных вычислениях значения погрешности сохраняют три -четыре значащие цифры.

2) Окончательное значение погрешности и значение результата округляются в соответствии с изложенными выше правилами.

3) При однократных технических измерениях когда учитывается только основная погрешность СИ (СИ используются в нормальных условиях эксплуатации), результат записывается в виде:

или

.

(Например, результат измерения напряжения В, погрешность В. Результат может быть записан в виде:)

4) При однократных технических измерениях в рабочих условиях, когда по нормативным данным на СИ учитывают основную и дополнительные погрешности и результирующую погрешность определяют по формуле (1.35), результат записывают в виде:

5) При статистических измерениях, когда определяется только величина случайной погрешности нормально распределенных данных в виде доверительного интервала, результат записывается в соответствии с (1.31):

Если границы доверительного интервала несимметрична, то они указываются по отдельности.

Например,

6) При статистических измерениях, когда оцениваются границы неисключенных систематических погрешностей результата (НСП) и доверительный интервал случайной погрешности нормально распределенных данных, но результат используется как промежуточный для нахождения других величин (например, при статистических косвенных измерениях) или предполагается сопоставление его с другими результатами аналогичного измерительного эксперимента, результат записывается в соответствии с (1.39):

если , то это указывается дополнительно, как в п. 5.

Если границы НСП или границы доверительного интервала несимметричны, то они указываются по отдельности:

7) Если при измерении получены оценки погрешности при условиях, оговоренных в п. 6, но результат является окончательным и не предполагается в дальнейшем анализ его и сопоставление с другими результатами, то он записывается в соответствии с (1.41):

где определяется по формуле (1.40),

если же , это указывается дополнительно, как в п. 5.

8) При статистических измерениях, когда оцениваются границы НСП и доверительный интервал случайной погрешности, но при обработке результатов идентифицирован закон распределения, отличный от нормального, оценки значения результата измерения и доверительный интервал случайной погрешности находятся по соответствующим формулам [5], результат представляется в виде аналогичном представлению результата в п. 6, но дополнительно приводится информация о виде закона распределения опытных данных.

9) Если как в п. 8 обрабатываются результаты статических измерений и заранее известно, что закон распределения опытных данных отличается от нормального, но действий по идентификации вида реального закона по какой-либо причине не предпринимается, то результат может быть представлен в виде, аналогичном представлению результата в п. 6, но доверительный интервал случайной погрешности определяется в соответствии с рекомендациями ГОСТ 11.001-73 как при доверительной вероятности .

Запись результата может выглядеть, например, так:

(при ); ; ; .

Доверительная вероятность, при которой определяется суммарный НСП - , в этом случае может отличаться от .

StudFiles.ru

Округление

Сюда перенаправляется запрос «Символы Айверсона». На эту тему нужна отдельная статья (англ.).

Округление — математическая операция, позволяющая уменьшить количество знаков в числе за счёт замены числа его приближённым значением с определённой точностью.

Методы

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding) — наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-ого знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 5, то N-й знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5, то N-й знак увеличивают на единицу, а N+1 и все последующие обнуляют;
    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3. Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.
  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer) — самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной — положительна.
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling — досл. «потолок») — если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне — округление в пользу продавца, кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2. Погрешность округления — в пределах +1 последнего сохраняемого разряда.
  • Округление к меньшему (округление к −∞, округление вниз, англ. floor — досл. «пол») — если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне — округление в пользу покупателя, дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3. Погрешность округления — в пределах −1 последнего сохраняемого разряда.
  • Округление к большему по модулю (округление к бесконечности, округление от нуля) — относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.

Варианты округления 0,5 к ближайшему целому

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю. Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» — в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление — округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ. banker's rounding) — округление для этого случая происходит к ближайшему чётному, то есть 2,5 → 2, 3,5 → 4.
  • Случайное округление — округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
  • Чередующееся округление — округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений, которые далее будут обрабатываться совместно, может происходить накопление ошибки округления. Типичный пример: округление до целых рублей денежных сумм, выражаемых в рублях и копейках. В реестре из 10 000 строк (если считать копеечную часть каждой суммы случайным числом с равномерным распределением, что обычно вполне допустимо) окажется в среднем около 100 строк с суммами, содержащими в части копеек значение 50. При округлении всех таких строк по правилам математического округления «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина — справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина — в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

  • Округление в случайную сторону требует для каждой округляемой строки генерировать случайное число. При использовании псевдослучайных чисел, создаваемых линейным реккурентным методом, для генерации каждого числа требуется операция умножения, сложения и деления по модулю, что для больших объёмов данных может существенно замедлить расчёты.
  • Чередующееся округление требует хранить флаг, показывающий, в какую сторону последний раз округлялось специальное значение, и при каждой операции переключать значение этого флага.

Обозначения

Операция округления числа x к большему (вверх) обозначается следующим образом: ⌈ x ⌉ {\displaystyle \lceil x\rceil } . Аналогично, округление к меньшему (вниз) обозначается ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } . Эти символы (а также английские названия для этих операций — соответственно, ceiling и floor, досл. «потолок» и «пол») были введены[1] К. Айверсоном в его работе A Programming Language[2], описавшей систему математических обозначений, позже развившуюся в язык программирования APL. Айверсоновские обозначения операций округления были популяризированы Д. Кнутом в его книге «Искусство программирования»[3].

По аналогии, округление к ближайшему целому часто обозначают как [ x ] {\displaystyle \left[x\right]} . В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности). Кроме того, это же обозначение используется (с другим значением) в нотации Айверсона.[1]

В стандарте Юникод зафиксированы следующие символы:

Название
в Юникоде Код в Юникоде Вид Мнемоника
в HTML 4 Примечания 16-ричный десятичный
LEFT CEILING (тж. APL upstile) 2308 8968 не путать с:
  • U+2E22 ⸢ — Top left half bracket
  • U+300C 「 — Left corner bracket
RIGHT CEILING 2309 8969 не путать с:
  • U+20E7 ◌⃧ — Combining annuity symbol
  • U+2E23 ⸣ — Top right half bracket
LEFT FLOOR (тж. APL downstile) 230A 8970 не путать с:
  • U+2E24 ⸤ — Bottom left half bracket
RIGHT FLOOR 230B 8971 не путать с:
  • U+2E25 ⸥ — Bottom right half bracket
  • U+300D 」 — Right corner bracket

Применения

Округление используется для того, чтобы работать с числами в пределах того количества знаков, которое соответствует реальной точности параметров вычислений (если эти значения представляют собой измеренные тем или иным образом реальные величины), реально достижимой точности вычислений либо желаемой точности результата. В прошлом округление промежуточных значений и результата имело прикладное значение (так как при расчётах на бумаге или с помощью примитивных устройств типа абака учёт лишних десятичных знаков может серьёзно увеличить объём работы). Сейчас оно остаётся элементом научной и инженерной культуры. В бухгалтерских приложениях, кроме того, использование округлений, в том числе промежуточных, может требоваться для защиты от вычислительных ошибок, связанных с конечной разрядностью вычислительных устройств.

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле M = ( m g ) ⋅ h {\displaystyle M=(mg)\cdot h} , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений[4]:

  1. Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м — здесь надёжными являются только десятки, до них и следует округлять).
  2. Промежуточные значения округляются с одной «запасной» цифрой.
  3. При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  4. При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют множители или делимое и делитель. Например, если тело при равномерном движении прошло дистанцию 2,5 × 103 метров за 635 секунд, то при вычислении скорости результат должен быть округлён до 3,9 м/с, поскольку одно из чисел (расстояние) известно лишь с точностью до двух значащих цифр. Важное замечание: если один операндов при умножении или делитель при делении является по смыслу целым числом (то есть не результатом измерений непрерывной физической величины с точностью до целых единиц, а, например, количеством или просто целой константой), то количество значащих цифр в нём на точность результата операции не влияет, и оставляемое число цифр определяется только вторым операндом. Например, кинетическая энергия тела массой 0,325 кг, движущегося со скоростью 5,2 м/с, равна E k = m v 2 2 = 0.325 ⋅ 5.2 2 2 = 4.394 ≈ 4.4 {\displaystyle E_{k}={\tfrac {mv^{2}}{2}}={\tfrac {0.325\cdot 5.2^{2}}{2}}=4.394\approx 4.4} Дж — округляется до двух знаков (по количеству значащих цифр в значении скорости), а не до одного (делитель 2 в формуле), так как значение 2 по смыслу — целая константа формулы, она является абсолютно точной и не влияет на точность вычислений (формально такой операнд можно считать «измеренным с бесконечным числом значащих цифр»).
  5. При вычислении значения функции f ( x ) {\displaystyle f\left(x\right)} требуется оценить значение модуля производной этой функции в окрестности точки вычисления. Если | f ′ ( x ) | ⩽ 1 \leqslant 1 , то результат функции точен до того же десятичного разряда, что и аргумент. В противном случае результат содержит меньше точных десятичных разрядов на величину log 10 ⁡ ( | f ′ ( x ) | ) {\displaystyle \log _{10}\left(\left|f'\left(x\right)\right|\right)} , округлённую до целого в большую сторону.

Несмотря на нестрогость, приведённые правила достаточно хорошо работают на практике, в частности, из-за достаточно высокой вероятности взаимопогашения ошибок, которая при точном учёте погрешностей обычно не учитывается.

Ошибки

Довольно часто встречаются злоупотребления некруглыми числами. Например:

  • Записывают числа, имеющие невысокую точность, в неокруглённом виде. В статистике: если 4 человека из 17 ответили «да», то пишут «23,5 %» (в то время как верно «24 %», так как число значащих цифр в исходных данных не более двух).
  • Пользователи стрелочных приборов иногда размышляют так: «стрелка остановилась между 5,5 и 6 ближе к 6, пусть будет 5,8» — это также запрещено (градуировка прибора, как правило, соответствует его реальной точности). В таком случае надо говорить «5,5» или «6».

Интересный факт

  • Карл Фридрих Гаусс отмечал: «Недостатки математического образования с наибольшей отчётливостью проявляются в чрезмерной точности численных расчётов»[5].

ru.wikipedia.org

Записи погрешностей и правила округления

Для единообразия выражения результатов измерений и погрешностей формы их представления стандартизируются. Основные правила при этом следующие.

Так как погрешности определяют лишь зону недостоверности результата измерений, знать их очень точно не требуется. Поэтому в окончательной записи погрешность выражается одной или двумя значащими цифрами. Значащими цифрами числа являются цифры, остающиеся после отбрасывания стоящих впереди нулей. Так, в числах 0,12 и 0,012 находится по две значащие цифры. Принято, что наименьшие разряды числовых значений результата измерений и погрешности должны быть одинаковы: 20,56±0,25 или 2,1±0,1. Одной из самых распространенных ошибок при оценивании результатов и погрешностей измерений является вычисление их с чрезмерно большим числом значащих цифр. Как правило, в этом нет необходимости и только при промежуточных вычислениях можно удерживать по 3-4 значащие цифры.

Лишь при наиболее точных вычислениях оставляют две цифры. Результат измерения должен быть записан так, чтобы он оканчивался десятичным знаком того же разряда, что и значение погрешности. Большее число разрядов не нужно, так как это не уменьшит неопределенности результата, характеризуемого этой погрешностью. Уменьшение же числа разрядов путем округления увеличивает неопределенность результата измерений и уменьшает его точность. Например, погрешность округления погрешности до двух значащих цифр составляет 5 %, а до одной значащей цифры – не более 50 %.

Установлены следующие правила округления результатов и погрешностей измерений:

1. Результат измерения округляется так, чтобы он оканчивался цифрой того же разряда, что и значение его погрешности. Если десятичная дробь в числовом значении результата измерений оканчивается нулями, то их отбрасывают только до того разряда, который соответствует разряду числового значения погрешности. Например, результат 3, 2800 при погрешности 0,001 округляют до 3,280.

2. Если цифра старшего из отбрасываемых разрядов меньше 5, то остающиеся цифры числа не изменяют, лишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают. Например, число 267 245 при сохранении четырех значащих цифр должно быть округлено до 267 200; число 165,245 до165,2.

3. Если цифра старшего отбрасываемого разряда больше или равна 5, но за ней следуют отличные от нуля цифры, то последнюю оставляемую цифру увеличивают на единицу: 14597®14600; 123,58®124;

4. Если отбрасываемая цифра равна 5, а следующие за ней цифры неизвестны или равны нулю, то последнюю сохраняемую цифру не изменяют, если она четная, и увеличивают, если она нечетная: 10,5®10; 11,5®12.

studopedia.ru

Читайте также