Область определения

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когдаподкоренное выражение неотрицательно: . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-ой степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение: подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте снеравенствами двух переменных, где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства. Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ: область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение: подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье Графики и свойства элементарных функций и методичке Горячие формулы школьного курса математики.

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ: область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальнымметодом интервалов, известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства.

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным. Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Некоторым посетителям сайта рассматриваемые примеры покажутся элементарными и примитивными, но в этом нет случайности – во-первых, я стараюсь «заточить» материал для нубов, а во-вторых, подбираю реалистичные вещи под грядущие задачи: полное исследование функции, нахождение области определения функции двух переменныхи некоторые другие. Всё в математике цепляется друг за дружку. Хотя любители трудностей тоже не останутся обделёнными, более солидные задания встретятся и здесь, и на уроке
о методе интервалов.

studopedia.ru

Область определения функции это:

Область определения функции

Область определения функции — множество, на котором задаётся функция.

Содержание

  • 1 Определение
  • 2 Примеры
    • 2.1 Числовые функции
      • 2.1.1 Тождественное отображение
      • 2.1.2 Гармоническая функция
      • 2.1.3 Дробно-рациональные функции
      • 2.1.4 Мера
      • 2.1.5 Функционал
  • 3 См. также
  • 4 Литература

Определение

Если задана функция, которая действует из одного множества в другое, то множество, из которого действует данная функция, называется областью определения.

Более формально, пусть задано отображение , которое отображает множество в , то есть: ; тогда

  • множество называется областью определения функции
  • и обозначается , или (от англ. domain «область»).

Обычно предполагается, что , из-за чего понятие области определения выглядит тавтологией: «область определения функции — это область, где определена функция». Для того, чтобы придать чёткий смысл данному понятию, рассматривается некоторое более широкое множество, которое называется областью отправления, и тогда область определения функции  — это такое подмножество множества (которое и есть область отправления функции), где для каждого элемента определено значение функции .

Этот факт коротко записывают в виде: .

Примеры

Наиболее наглядные примеры областей определения доставляют числовые функции. Мера и функционал также доставляют важные в приложениях виды областей определения.

Числовые функции

Числовые функции — это функции, относящиеся к следующим двум классам:

  • вещественнозначные функции вещественного переменного — это функции вида ;
  • а, также, комплекснозначные функции комплексного переменного это функции вида ,

где и  — множества вещественных и комплексных чисел соответственно.

Тождественное отображение

Область определения функции совпадает с областью отправления ( или ).

Гармоническая функция

Область определения функции : представляет собой комплексную плоскость без нуля

и не совпадает с областью отправления (вся комплексная плоскость).

Дробно-рациональные функции

Область определения дробно-рациональной функции вида

представляет собой вещественную прямую или комплексную плоскость за исключением конечного числа точек, которые являются решениями уравнения

.

Эти точки называются полюсами функции .

Мера

Если каждая точка области определения функции — это некоторое множество, например, подмножество заданного множества, то говорят, задана функция множества.

Мера — пример такой функции, где в качестве области определения функции (меры) выступает некоторая совокупность подмножеств заданного множества, являющееся, например, кольцом или полукольцом множеств.

Например, определённый интеграл представляет собой функцию ориентированного промежутка.

Функционал

Пусть  — семейство отображений из множества в множество . Тогда можно определить отображение вида . Такое отображение называется функционалом.

Если, например, фиксировать некоторую точку , то можно определить функцию , которая принимает в «точке» то же значение, что и сама функция в точке .

См. также

  • Область значений функции

Литература

  • Функция. Математический энциклопедический словарь. — Гл. ред. Ю. В. Прохоров. — М.: «Большая российская энциклопедия», 1995.
  • Клейн Ф. Общее понятие функции. В кн.: Элементарная математика с точки зрения высшей. Т.1. М.-Л., 1933
  • ISBN 5-02-014844-X
  • А. Н. Колмогоров, С. В. Фомин. Глава 1.. Элементы теории множеств // Элементы теории функций и функционального анализа. — 3-е изд.. — М.: Наука, 1972. — С. 14 — 18. — 256 с.
  • А. Н. Колмогоров «Что такое функция» // «Квант». — М.: «Наука», 1970. — В. 1. — С. 27-36. — ISSN 0130-2221.
Wiki letter w.svg Для улучшения этой статьи по математике желательно?:
  • Добавить иллюстрации.
Категория:
  • Функции

Wikimedia Foundation. 2010.

dic.academic.ru

ОБЛАСТЬ ОПРЕДЕЛЕНИЯ это:

ОБЛАСТЬ ОПРЕДЕЛЕНИЯ

функции - множество, на к-ром задана рассматриваемая функция, т. е. совокупность X всех тех элементов х, каждому из к-рых данная функция f ставит в соответствие элемент уиз нек-рого множества У; таким образом, если , то Xназ. О. О. функции.

Л. Д. Кудрявцев.


Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.

dic.academic.ru

Как найти область определения функции??

Юлия

1) Если в функции есть корень чётной степени, то подкореное выражение должно быть больше нуля.
2) Если в фунцкии есть дробь, то её знаменатель не должен быть равен нулю.
3) Если в функции содержитсявыражение f(x) в степени g(x), то f(x) больше, либо равна нулю, причём f(x) и g(x) одновременно не равны нулю.
4) Если в функции имеются функции с ограниченной областью определения, то область определения исходной функции не шире их области определения. (Например, обратные тригонометрические функции или функции tg(x), ctg(x) и т. д. )

Например, функция
имеет область определения:

а) arcsin имеет область определения от -1 до 1;
б) x>=0 (т. к. x подкоренное выражение) ;
в) arcsin(x) не равен нулю, т. е. x не равно нулю (т. к. arcsin(x) выражение в знаменателе) .

Таким образом, область определения функции x принадлежит (0,1].
Напишите функцию.

Александра

При решении многих задач приходится искать область определения функции. Особенно это нужно знать при построении графика и исследовании функции. Именно поэтому я решил рассмотреть основные варианты, которые могут быть при нахождении области определения функции. Их не так много, наверняка, многие это знают и сами, но думаю, напомнить не будет лишним.

И так, область определения функции – это множество всех тех значений переменной х, при каких функция f(x) имеет смысл. То есть значения переменной х, при которых функция от этой переменной существует, а могут быть и такие, при каких она не существует, нам нужны, только те, при которых – существует.

Рассмотрим конкретные варианты, в каких случаях функция может существовать не при всех значениях переменной:

Во-первых, когда есть дробь, в этом случае знаменатель дроби, недолжен быть равным нулю, потому, что такая дробь не может существовать. То есть, если ваша функция - дробь и в знаменателе есть переменная (потому, что если там только число, то оно никогда не станет нулём) то вам надо всё то выражение, что в знаменателе прировнять к нулю. И решив полученное уравнение, вы найдёте те значения переменной x, которые необходимо исключить с области определения.
Во-вторых, когда есть корень чётной степени, думаю, вы знаете, что в поле вещественных чисел, корень чётной степени может быть только с положительного числа. То есть если в вас есть функция с корнем чётной степени, то что бы найти те числа, которые не будут попадать в область определения, вам надо решить неравенство, где выражение, что под корнем будет меньше нуля.
В-третьих, когда есть логарифм. Здесь понятно, что область определения логарифма все числа, которые больше ноля. То есть что бы найти те значения переменной, которые надо исключить с области определения, вам надо составить и решить неравенство, где выражение, которое будет под логарифмом должно быть меньше нуля.
В-четвёртых, не надо забыть о таких обратных тригонометрических функциях, как арксинус и арккосинус, которые определены, только на промежутке [-1;1]. Соответственно вам надо следить, что бы выражение, которое будет под этими функциями, также попадало в этот промежуток и исключить все значения переменной, которые туда не попадают.
И в-пятых, в одном примере может быть несколько этих случаев. Надо разбирать всё, до мельчайших подробностей. Например, в знаменателе дроби, может быть корень из арксинуса, поэтому вам надо отобрать, только те значения переменной, при которых существует арксинус, при чём значение этого арксинуса должно не должно быть равное нулю (так как оно в знаменателе) и также не должно быть отрицательным (так как есть корень) .

Читайте также