Радиоуглеродный метод определения возраста

Что такое радиоуглеродный анализ?

Радиоуглеродный анализ изменил наше представление о последних 50.000 лет. Профессор Уиллард Либби впервые продемонстрировал его в 1949 году, за что позже был удостоен Нобелевской премии.

Метод датировки

Суть радиоуглеродного анализа состоит в сравнении трех различных изотопов углерода. Изотопы конкретного элемента имеют одинаковое число протонов в ядре, но разное число нейтронов. Это означает, что при большой химической схожести они обладают разными массами.

Общая масса изотопа обозначается числовым индексом. В то время как более легкие изотопы 12С и 13С стабильны, самый тяжелый изотоп 14C (радиоуглерод) радиоактивен. Его ядро ​​настолько велико, что оно является нестабильным.

С течением времени 14C – основа радиоуглеродного анализа – распадается на азот 14N. Большая часть углерода-14 создается в верхних слоях атмосферы, где нейтроны, которые образуются под действием космических лучей, вступают в реакцию с атомами 14N.

Затем он окисляется в 14СО2, проникает в атмосферу и смешивается с 12CO2 и 13CO2. Углекислый газ используется растениями в процессе фотосинтеза, а оттуда проходит через пищевую цепь. Поэтому всякое растение и животное в этой цепи (включая людей) будет иметь равное количество 14С по сравнению с 12С в атмосфере (отношение 14С:12С).

радиоуглеродный анализ

Ограничения метода

Когда живые существа умирают, ткань больше не заменяется, а радиоактивный распад 14C становится явным. Через 55 тысяч лет 14C распадается настолько, что его остатки уже невозможно измерить.

Что такое радиоуглеродный анализ? Радиоактивный распад может быть использован в качестве «часов», так как он не зависит от физических (например, температуры) и химических (например, содержания воды) условий. За 5730 лет распадается половина 14C, содержащаяся в образце.

Поэтому, если известно соотношение 14C:12C в момент смерти и сегодняшнее соотношение, то можно вычислить, сколько времени прошло. К сожалению, определить их не так просто.

радиоуглеродный анализ точность

Радиоуглеродный анализ: погрешность

Количество 14С в атмосфере, следовательно, в растениях и животных, не всегда было постоянным. Например, оно варьируется в зависимости от того, сколько космических лучей достигает Земли. Это зависит от солнечной активности и магнитного поля нашей планеты.

К счастью, можно измерить эти колебания в образцах, датированных другими методами. Можно подсчитать годичные кольца деревьев и изменение в них содержания радиоуглерода. Из этих данных можно построить «калибровочную кривую».

В настоящее время ведутся работы по ее расширению и совершенствованию. В 2008 году можно было откалибровать только радиоуглеродные даты до 26000 лет. Сегодня кривая расширена до 50000 лет.

радиоуглеродный анализ погрешность

Что можно измерить?

Не все материалы могут быть датированы этим методом. Большинство, если не все, органических соединений позволяют проводить радиоуглеродный анализ. Некоторые неорганические вещества, такие как арагонитовая составляющая раковин, также могут быть датированы, так как при образовании минерала использовался углерод-14.

Материалы, которые были датированы с момента создания метода, включают древесный уголь, дерево, ветки, семена, кости, раковины, кожу, торф, ил, почву, волосы, керамику, пыльцу, настенные рисунки, кораллы, остатки крови, ткани, бумагу, пергамент, смолы и воду.

Радиоуглеродный анализ металла невозможен, если в нем не содержится углерод-14. Исключение составляют изделия из железа, при изготовлении которых используется уголь.

что такое радиоуглеродный анализ

Двойной счет

Из-за этого осложнения радиоуглеродные даты представлены двояко. Некалиброванные замеры подаются числом лет до 1950 года (BP). Калиброванные даты также представлены как до н. э., так и после, а также с помощью единицы calBP (калиброванная до настоящего времени, до 1950 года). Это «наилучшая оценка» фактического возраста образца, но необходимо иметь возможность вернуться к старым данным и откалибровать их, поскольку новые исследования постоянно обновляют калибровочную кривую.

основа радиоуглеродного анализа

Количество и качество

Вторая трудность состоит в крайне низкой распространенности 14С. Только 0,0000000001% углерода в современной атмосфере представляет собой 14C, что причиняет невероятные сложности для измерений и делает его чрезвычайно чувствительным к загрязнениям.

В первые годы радиоуглеродный анализ продуктов распада требовал огромных образцов (например, половины бедренной кости человека). Многие лаборатории теперь используют масс-спектрометр с ускорителем (AMS), который может обнаруживать и измерять присутствие различных изотопов, а также подсчитать количество отдельных атомов углерода-14.

Этот метод требует менее 1 г костной ткани, но лишь немногие страны могут позволить себе больше, чем один или два AMS, стоимость которых превышает 500 тыс. $. Например, Австралия имеет лишь 2 таких прибора, которые способны производить радиоуглеродный анализ, и они недостижимы для большей части развивающегося мира.

метод радиоуглеродного анализа

Чистота – залог точности

Кроме того, образцы должны быть тщательно очищены от загрязнений углерода из клея и почвы. Это особенно важно для очень старых материалов. Если 1 % элемента в пробе возрастом 50 тыс. лет будет происходить из современного загрязнителя, она будет датирована как сорокатысячелетняя.

По этой причине исследователи постоянно разрабатывают новые методы эффективной очистки материалов. Они могут оказать существенное влияние на результат, который дает радиоуглеродный анализ. Точность метода существенно возросла с развитием нового способа очистки активированным углем ABOx-SC. Это позволило, например, отдалить дату прибытия первых людей в Австралию более чем на 10 тыс. лет.

Радиоуглеродный анализ: критика

Метод, доказывающий, что с момента возникновения Земли прошло гораздо больше 10 тыс. лет, упомянутых в Библии, неоднократно подвергался критике креационистов. Например, они утверждают, что за 50 тыс. лет в образцах не должно остаться углерода-14, но в угле, нефти и природном газе, возраст которых, предположительно составляет миллионы лет, содержатся измеримые количества этого изотопа, что подтверждает радиоуглеродный анализ. Погрешность измерений при этом больше фоновой радиации, от которой невозможно избавиться в лаборатории. Т. е. образец, в котором не содержится ни одного атома радиоактивного углерода, покажет дату в 50 тыс. лет. Однако этот факт не ставит под сомнение датировку объектов и тем более не свидетельствует о том, что нефть, уголь и природный газ моложе этого возраста.

Также креационисты отмечают некоторые странности радиоуглеродного анализа. Например, датировка пресноводных моллюсков определила их возраст, как превышающий 2000 лет, что, по их мнению, дискредитирует данный метод. На самом деле установлено, что моллюски получают большую часть углерода из известняка и гумуса, содержание 14C в которых очень низкое, так как эти минералы очень старые и не имеют доступа к углероду воздуха. Радиоуглеродный анализ, точность которого в этом случае можно подвергнуть сомнению, в остальном соответствует действительности. Древесина, например, такой проблемы не имеет, т. к. растения получают углерод прямо из воздуха, который содержит полную дозу 14C.

Другим аргументом, направленным против метода, является тот факт, что деревья способны образовывать за один год более одного кольца. Это действительно так, но чаще случается так, что они вообще не формируют годичных колец. Остистая сосна, на основе которой проведено большинство измерений, имеет на 5 % колец меньше, чем ее фактический возраст.

странности радиоуглеродного анализа

Установление даты

Радиоуглеродный анализ – это не только метод, но и захватывающие открытия в нашем прошлом и настоящем. Метод позволил археологам расположить находки в хронологическом порядке без необходимости наличия письменных записей или монет.

В 19 и начале 20 века невероятно терпеливые и осторожные археологи связывали керамику и каменные орудия различных географических районов путем поиска сходства в форме и узорах. Затем, используя идею о том, что стили объектов эволюционировали и становились все более сложными с течением времени, они могли их разместить по порядку.

Таким образом, большие купольные гробницы (известный как толосы) в Греции считались предшественниками подобных структуры на шотландском острове Мейсхау. Это поддерживало идею о том, что классические цивилизации Греции и Рима были в центре всех инноваций.

Однако в результате проведения радиоуглеродных анализов выяснилось, что шотландские гробницы были на тысячи лет старше, чем греческие. Северные варвары были способны проектировать сложные структуры, аналогичные классическим.

Другими известными проектами было отнесение Туринской плащаницы к средневековому периоду, датировка свитков Мертвого моря временем Христа, и несколько спорная периодизация рисунков в пещере Шове возрастом 38 000 calBP (около 32 000 ВР), на тысячи лет раньше, чем ожидалось.

Радиоуглеродный анализ также применялся при определении времени вымирания мамонтов и внес свой вклад в споры по поводу того, встречались ли современные люди и неандертальцы или нет.

Изотоп 14С используется не только для определения возраста. Метод радиоуглеродного анализа позволяет исследовать циркуляцию океана и проследить движение лекарств по всему телу, но это тема другой статьи.

fb.ru

Радиоуглеродный метод определения абсолютного возраста

четвертичных отложений

Сущность радиоуглеродного метода заключается в следующем: космические лучи бомбардируют нейтронами ядра азота (N 14). При этом они выбивают из азота протоны. В результате из азота образуются радиоактивный углерод С14 (создается тяжелый изотоп углерода с атомным весом 14). Это идет по такой формуле:

N14+ n ® С14 + Р

n - нейтрон

Р - протон

Радиоактивный углерод С14 (радиоуглерод) способен к распаду. Распад приводит к переходу радиоактивного углерода С14 в обыкновенный азот N14. Распад С14 происходит путем выбрасывания из ядра частицы (электрона - е). Это идет по такой формуле:

С14-е ® N14

Период полураспада ("жизни") радиоактивного углерода С14 составляет Т=5568 +-30 лет. Отношение радиоактивного углерода (С14) к обычному углероду (С12) в атмосферной углекислоте постоянно.

C14/C12 = 10-8

Такое отношение С14/С12 наблюдается и в живых организмах (животных и растениях). Это происходит потому, что они непрерывно усваивают углерод из атмосферы. При этом растения ассимилируют его непосредственно из воздуха (фотосинтез), а животные усваивают углерод, питаясь растениями.

После смерти растения или животного в мертвом органическом веществе прекращается процесс обмена. Вследствие этого радиоактивный углерод перестает поступать в живые организмы (он может поступать только при жизни организма в период обмена вещества). С этого момента (после смерти животного или растения) начинается распад радиоактивного углерода. В результате количество его постепенно уменьшается как в захороненных растениях, так и в захороненных животных. Если принять содержание радиоактивного углерода (С14) в живом организме за 100%, то с течением времени оно будет уменьшаться следующим образом (например):

Дата гибели С14

1956 г. 100%

7526 г. 50%

13092г. 25%

18660г. 12,5%

24228г. 6.5%

Определив таким образом количество С14 в каком-либо палеонтологическом объекте можно судить о количестве лет, которые прошли со времени гибели животных и растении.

По радиоактивному углероду довольно точно определяют возраст отложений не более 30 тыс.лет, т.е. возраст голоценовых и частично верхнеплейстоценовых отложений. Возраст же более древних (средне- и нижнеплейстоценовых) отложений определяют иониевым и другими радиоактивными методами. Это обусловлено тем, что при возрасте отложений более 30 тыс. лет в органическом веществе остается очень мало радиоактивного углерода и содержание его точно определить не удается. Однако по более сложной методике можно определить возраст отложений до 40-45 тыс. лет.

Ценность радиоуглеродного метода состоит в том, что при его помощи можно устанавливать возраст по органическим остаткам не только хорошей сохранности, но и по их обломкам, палеонтологически не определимым.

Для определения возраста отложений органическое вещество, взятое из этих отложений, подвергают определенной химической обработке. Затем подсчитываются импульсы распада радиоактивного вещества. Это делают с помощью счетчика Гейгера.

Углерод карбонатов не годится для определения возраста радиоуглеродным методом. От него избавляются путем растворения образца в соляной кислоте. Отсюда, образцы известковых раковин обычно непригодны для данного метода. Кости животных и древесина, загрязненные карбонатами, приходится обрабатывать соляной кислотой, чтобы удалить карбонаты.

Наиболее подходящими для данного метода являются такие объекты исследования:

1. Древесный уголь - (вес пробы 30-90 г);

2. Сухое дерево и др. растительные остатки - (60 г);

3. Сухой торф, кожа, волосы, копыта, когти - (150-300 г);

4. Рога животных - (500-2200 г).

При отборе проб руководствуются следующими положениями:

1) вес пробы в поле берут не менее чем в два раза больше того, который необходим для анализа (см. выше).

2) Пробы берут из свежерасчищенных обнажений. Затем их упаковывают в алюминиевую или оловянную фольгу или в жестяные коробки.

Радиоуглеродный метод применяется для изучения возраста континентальных отложений. Иониевый метод используют при определении темпов накопления осадков в современных океанах.

studopedia.ru

Радиоуглеродное датирование это:

Радиоуглеродное датирование Изменение атмосферной концентрации радиоуглерода 14C, вызванное ядерными испытаниями. Синим показана естественная концентрация

Радиоуглеро́дный ана́лиз — физический метод датирования биологических останков, предметов и материалов биологического происхождения путём измерения содержания в материале радиоактивного изотопа 14C по отношению к стабильным изотопам углерода. Предложен Уиллардом Либби в 1946 году (Нобелевская премия по химии, 1960).

Содержание

  • 1 Физические основания
  • 2 Применение
  • 3 Калибровка
  • 4 Критика метода
  • 5 См. также
  • 6 Ссылки

Физические основания

Углерод, являющийся одной из основных составляющих биологических организмов, присутствует в земной атмосфере в виде стабильных изотопов 12C и 13C и радиоактивного 14C. Изотоп 14C постоянно образуется в атмосфере под действием радиации (главным образом, космических лучей, но и излучения от земных источников тоже). Соотношение радиоактивного и стабильных изотопов углерода в атмосфере и в биосфере в одно и то же время в одном и том же месте одинаково, поскольку все живые организмы постоянно участвуют в углеродном обмене и получают углерод из окружающей среды, а изотопы, в силу их химической неразличимости, участвуют в биохимических процессах практически одинаковым образом. В живом организме удельная активность 14C равна примерно 0,3 распада в секунду на грамм углерода, что соответствует изотопному содержанию 14C около 10−10 %.

С гибелью организма углеродный обмен прекращается. После этого стабильные изотопы сохраняются, а радиоактивный (14C) испытывает бета-распад с периодом полураспада 5568±30 лет (по новым уточнённым данным - 5730±40 лет), в результате его содержание в останках постепенно уменьшается. Зная исходное соотношение содержания изотопов в организме и измерив их текущее соотношение в биологическом материале, можно определить, сколько углерода-14 распалось и, таким образом, установить время, прошедшее с момента гибели организма.

Применение

Для определения возраста из фрагмента исследуемого образца выделяется углерод (путём сжигания фрагмента), для выделенного углерода производится измерение радиоактивности, на основании этого определяется соотношение изотопов, которое и показывает возраст образца. Образец углерода для измерения активности обычно вводится в газ, которым наполняется пропорциональный счётчик, либо в жидкий сцинтиллятор. В последнее время для очень малых содержаний 14C и/или очень малых масс образцов (несколько мг) используется ускорительная масс-спектрометрия, позволяющая прямо определять содержание 14C. Предельный возраст образца, который может быть определён радиоуглеродным методом — около 60 000 лет, т. е. около 10 периодов полураспада 14C. За это время содержание 14C уменьшается примерно в 1000 раз (около 1 распада в час на грамм углерода).

Измерение возраста предмета радиоуглеродным методом возможно только тогда, когда соотношение изотопов в образце не было нарушено за время его существования, то есть образец не был загрязнён углеродосодержащими материалами более позднего или более раннего происхождения, радиоактивными веществами и не подвергался действию сильных источников радиации. Определение возраста таких загрязнённых образцов может дать огромные ошибки. Так, например, описан случай, когда тестовое определение по траве, сорванной в день анализа, дало возраст порядка миллионов лет, из-за того, что трава была сорвана на газоне вблизи автодороги с постоянным сильным движением и оказалась сильно загрязнена "ископаемым" углеродом из выхлопных газов (сгоревших нефтепродуктов). За прошедшие с момента разработки метода десятилетия накоплен большой опыт в выявлении загрязнений и в очистке от них образцов. Погрешность метода в настоящее время, как считается, находится в пределах от семидесяти до трёхсот лет.

Один из наиболее известных случаев применения радиоуглеродного метода — исследование фрагментов Туринской плащаницы (христианской святыни, якобы хранящей на себе следы тела распятого Христа), проведённое в 1988 году, одновременно в нескольких лабораториях слепым методом. Радиоуглеродный анализ позволил датировать плащаницу периодом XI—XIII веков.

Калибровка

Исходные предположения Либби, на которых строилась идея метода, заключались в том, что соотношение изотопов углерода в атмосфере во времени и пространстве не меняется, а содержание изотопов в живых организмах в точности соответствует текущему состоянию атмосферы. В настоящее время твёрдо установлено, что все эти предположения могут быть приняты лишь приблизительно. Содержание изотопа 14C зависит от радиационной обстановки, которая меняется во времени из-за колебания уровня космических лучей и активности Солнца, и в пространстве, вследствие неодинакового распространения радиоактивных веществ на поверхности Земли и событий, связанных с радиоактивными материалами (так, например, в настоящее время в образование изотопа 14C до сих пор вносят свой вклад радиоактивные материалы, которые образовались и были рассеяны при испытаниях ядерного оружия в атмосфере в середине XX века). В последние десятилетия вследствие сжигания ископаемого топлива, в котором 14C практически отсутствует, атмосферное содержание этого изотопа снижается. Таким образом, принятие некоторого соотношения изотопов за постоянное способно породить значительные ошибки (порядка тысячелетий). Кроме того, исследования показали, что некоторые процессы в живых организмах приводят к избыточному накоплению радиоактивного изотопа углерода, что нарушает естественное соотношение изотопов. Понимание процессов, связанных с углеродным обменом в природе и влияния этих процессов на соотношение изотопов в биологических объектах было достигнуто не сразу.

В результате радиоуглеродные датировки, производившиеся 30—40 лет назад, часто оказывались весьма неточными. В частности, проведённая тогда проверка метода по ныне живущим деревьям возрастом в несколько тысяч лет показала значительные отклонения для образцов древесины возрастом свыше 1000 лет.

В настоящее время для правильного применения метода произведена тщательная калибровка, учитывающая изменение соотношения изотопов для различных эпох и географических регионов, а также учёт специфики накопления радиоактивных изотопов в живых существах и растениях. Для калибровки метода используется определение соотношения изотопов для предметов, абсолютная датировка которых заведомо известна. Одним из источников калибровочных данных является дендрохронология. Также проведены сопоставления определения возраста образцов радиоуглеродным методом с результатами других изотопных методов датирования. Стандартная кривая, используемая для пересчёта измеренного радиоуглеродного возраста образца в абсолютный возраст, приведена здесь: [1].

Можно констатировать, что в своём современном виде на историческом интервале (от десятков лет до 60—70 тысяч лет в прошлое) радиоуглеродный метод можно считать достаточно надёжным и качественно откалиброванным независимым методом датирования предметов биологического происхождения.

Критика метода

Несмотря на то, что радиоуглеродное датирование уже давно вошло в научную практику и достаточно широко используется, высказывается и критика этого метода, ставящая под сомнение как отдельные случаи его применения, так и теоретические основания метода в целом. Как правило, радиоуглеродный метод критикуется сторонниками креационизма, «Новой хронологии» и других теорий, не признанных научным сообществом. Основные возражения против радиоуглеродного датирования приведены в статье Критика естественно-научных методов в «Новой хронологии» Фоменко. Часто критика радиоуглеродного анализа основывается на состоянии методологии в 1960-х годах, когда метод ещё не был надёжно откалиброван.

См. также

  • Оптическое датирование
  • Термолюминесцентное датирование

Ссылки

  • В.Левченко. Радиоуглерод и абсолютная хронология: записки на тему.
  • В.А.Дергачев. Радиоуглеродный хронометр.

Wikimedia Foundation. 2010.

dic.academic.ru

Радиоизотопное датирование

Радиоизото́пное или радиометри́ческое дати́рование — метод определения возраста различных объектов, в составе которых есть какой-либо радиоактивный изотоп. Основан на определении того, какая доля этого изотопа успела распасться за время существования образца. По этой величине, зная период полураспада данного изотопа, можно рассчитать возраст образца.

Радиоизотопное датирование широко применяется в геологии, палеонтологии, археологии и других науках. Это источник практически всех абсолютных датировок различных событий истории Земли. До его появления были возможны только относительные датировки — привязка к определённым геологическим эрам, периодам, эпохам и т. д., длительность которых была неизвестна.

В различных методах радиоизотопного датирования используются разные изотопы разных элементов. Поскольку они сильно отличаются по химическим свойствам (и, следовательно, по содержанию в различных геологических и биологических материалах и по поведению в геохимических циклах), а также по периоду полураспада, у разных методов отличается область применимости. Каждый метод применим только к определённым материалам и определённому интервалу возрастов. Самые известные методы радиоизотопного датирования — это радиоуглеродный, калий-аргоновый (модификация — аргон-аргоновый), калий-кальциевый, уран-свинцовый и торий-свинцовый методы. Также для определения геологического возраста пород широко применяются гелиевый (основанный на накоплении гелия-4 от альфа-активных природных изотопов), рубидий-стронциевый, самарий-неодимовый, рений-осмиевый, лютеций-гафниевый методы. Кроме того, используются неравновесные методы датирования, основанные на нарушении изотопного равновесия в природных радиоактивных рядах, в частности иониевый, иониево-протактиниевый, ураново-изотопный методы и метод свинца-210. Существуют также методы, основанные на накоплении изменений в физических свойствах минерала под действием облучения: метод трекового датирования и термолюминесцентный метод.

История

Идею радиоизотопного датирования предложил Эрнест Резерфорд в 1904 году, через 8 лет после открытия радиоактивности Анри Беккерелем. Тогда же он сделал первую попытку определить возраст минерала по содержанию урана и гелия[Комм. 1][1][2][3]. Уже через 2 года, в 1907, Бертрам Болтвуд, радиохимик из Йельского университета, опубликовал первые уран-свинцовые датировки ряда образцов урановой руды и получил значения возраста от 410 до 2200 млн лет[4]. Результат имел большое значение: он показал, что возраст Земли во много раз больше 20—40 млн лет, полученных десятью годами ранее Уильямом Томсоном на основании скорости остывания планеты. Однако тогда не было известно про образование части свинца в результате распада тория и даже про существование изотопов, и поэтому оценки Болтвуда обычно были завышены на десятки процентов, иногда почти вдвое[5][6].

В последующие годы шло интенсивное развитие ядерной физики и усовершенствование технологий, благодаря чему к середине 20 века была достигнута хорошая точность радиоизотопных датировок. Этому особенно помогло изобретение масс-спектрометра[7]. В 1949 году Уиллард Либби разработал радиоуглеродный анализ и продемонстрировал его пригодность на образцах дерева известного возраста (в интервале 1400—4600 лет)[8], за что в 1960 году получил Нобелевскую премию по химии.

Физические основы

Количество любого радиоактивного изотопа уменьшается со временем по экспоненциальному закону (закон радиоактивного распада):

N ( t ) N 0 = e − λ t {\displaystyle {\frac {N(t)}{N_{0}}}=e^{-\lambda t}} ,

где:

N 0 {\displaystyle N_{0}}  — количество атомов в начальный момент, N ( t ) {\displaystyle N(t)}  — количество атомов по прошествии времени t {\displaystyle t} , λ {\displaystyle \lambda }  — постоянная распада.

Таким образом, каждый изотоп имеет строго определённый период полураспада — время, за которое его количество уменьшается вдвое. Период полураспада T 1 / 2 {\displaystyle T_{1/2}} связан с постоянной распада следующим образом:

T 1 / 2 = ln ⁡ 2 λ {\displaystyle T_{1/2}={\frac {\ln 2}{\lambda }}}

Тогда можно выразить отношение N ( t ) N 0 {\displaystyle {\frac {N(t)}{N_{0}}}} через период полураспада:

N ( t ) N 0 = 2 − t / T 1 / 2 {\displaystyle {\frac {N(t)}{N_{0}}}=2^{-t/T_{1/2}}}

Исходя из того, какая часть радиоизотопа распалась за некоторое время, можно рассчитать это время:

t = − T 1 / 2 log 2 ⁡ N ( t ) N 0 {\displaystyle t=-T_{1/2}\log _{2}{\frac {N(t)}{N_{0}}}}

Период полураспада не зависит от температуры, давления, химического окружения, интенсивности электромагнитных полей. Единственное известное исключение относится к тем изотопам, которые распадаются путём электронного захвата: у них есть зависимость скорости распада от электронной плотности в районе ядра. К таким относятся, например, бериллий-7, стронций-85 и цирконий-89. У таких радиоизотопов скорость распада зависит от степени ионизации атома; есть также слабая зависимость от давления и температуры. Существенной проблемой для радиоизотопного датирования это не является[9][10].

Источники трудностей

Главные источники трудностей для радиоизотопного датирования — это обмен веществом между исследуемым объектом и окружающей средой, который мог происходить после образования объекта, и неопределённость начального изотопного и элементного состава. Если на момент образования объекта в нём уже было некоторое количество дочернего изотопа, рассчитанный возраст может быть завышен, а если впоследствии дочерний изотоп покидал объект — занижен. Для радиоуглеродного метода важно, чтобы не было нарушенным соотношение изотопов углерода в начальный момент, так как содержание продукта распада — 14N — невозможно узнать (он ничем не отличается от обычного азота), и возраст можно определить только исходя из измерений нераспавшейся доли материнского изотопа. Таким образом, необходимо как можно более точное изучение истории исследуемого объекта на предмет возможного обмена веществом с окружающей средой и возможных особенностей изотопного состава.

Метод изохрон

Решить проблемы, связанные с привносом или потерей материнского или дочернего изотопа, помогает метод изохрон. Он работает независимо от изначального количества дочернего изотопа и позволяет установить, был ли в истории объекта обмен веществом с окружающей средой.

Этот метод основан на сравнении данных по разным образцам из одного геологического объекта, которые имеют заведомо одинаковый возраст, но отличаются элементным составом (следовательно, содержанием материнского радионуклида). Изотопный же состав каждого элемента в начальный момент должен быть одинаковым во всех образцах. Также эти образцы должны содержать вместе с дочерним изотопом какой-либо другой изотоп того же элемента. Образцы могут представлять как разные минералы из одного куска горной породы, так и разные части одного геологического тела.

Тогда для каждого образца выполняется:

D 0 + Δ M E 0 = Δ M M 0 − Δ M ( M 0 − Δ M E 0 ) + D 0 E 0 {\displaystyle {D_{0}+\Delta {M} \over E_{0}}={\Delta {M} \over M_{0}-\Delta {M}}\left({M_{0}-\Delta {M} \over E_{0}}\right)+{D_{0} \over E_{0}}} ,

где:

D 0 {\displaystyle D_{0}}  — концентрация дочернего изотопа в начальный момент, E 0 {\displaystyle E_{0}}  — концентрация нерадиогенного изотопа того же элемента (не изменяется), M 0 {\displaystyle M_{0}}  — концентрация материнского изотопа в начальный момент, Δ M {\displaystyle \Delta {M}}  — количество материнского изотопа, распавшееся за время t {\displaystyle t} (к моменту измерений).

В справедливости этого соотношения нетрудно убедиться, сделав сокращение в правой части.

Концентрация дочернего изотопа на момент измерений будет D t = D 0 + Δ M {\displaystyle D_{t}=D_{0}+\Delta {M}} , а концентрация материнского M t = M 0 − Δ M {\displaystyle M_{t}=M_{0}-\Delta {M}} . Тогда:

D t E 0 = Δ M M 0 − Δ M ( M t E 0 ) + D 0 E 0 {\displaystyle {D_{t} \over E_{0}}={\Delta {M} \over M_{0}-\Delta {M}}\left({M_{t} \over E_{0}}\right)+{D_{0} \over E_{0}}}

Отношения D t E 0 {\displaystyle D_{t} \over E_{0}} и M t E 0 {\displaystyle {M_{t} \over E_{0}}} можно измерить. После этого строится график, где эти величины откладываются по ординатам и абсциссам соответственно.

Если в истории образцов не было обмена веществом с окружающей средой, то соответствующие им точки на этом графике ложатся на прямую линию, потому что коэффициент Δ M M 0 − Δ M {\displaystyle {\Delta {M} \over M_{0}-\Delta {M}}} и слагаемое D 0 E 0 {\displaystyle {D_{0} \over E_{0}}} одинаковы для всех образцов (а отличаются эти образцы только изначальным содержанием материнского изотопа). Эта линия называется изохроной. Чем больше наклон изохроны, тем больше возраст исследуемого объекта. Если обмен веществом в истории объекта был, точки не лежат на одной прямой и это показывает, что в данном случае определение возраста ненадёжно.

Метод изохрон применяется в разных радиоизотопных методах датировки, таких как рубидий-стронциевый, самарий-неодимовый и уран-свинцовый.

Температура закрытия

Если минерал, кристаллическая решётка которого не удерживает дочерний нуклид, достаточно сильно разогревается, этот нуклид диффундирует наружу. Таким образом, «радиоизотопные часы» обнуляются: время, прошедшее с этого момента, и получается в результате радиоизотопной датировки. При остывании ниже некоторой температуры диффузия данного нуклида прекращается: минерал становится закрытой системой в отношении этого нуклида. Температура, при которой это происходит, называется температурой закрытия[en].

Температура закрытия сильно отличается для разных минералов и разных рассматриваемых элементов. Например, биотит начинает заметно терять аргон при нагреве до 280±40 °C[11], а циркон теряет свинец при температурах более 950—1000 °C[12].

Методы радиоизотопного датирования

Используются разные радиоизотопные методы, которые годятся для разных материалов, разных интервалов возраста и имеют разную точность.

Уран-свинцовый метод

Основная статья: Уран-свинцовый метод Микроскопический кристалл циркона, датированный уран-свинцовым методом. Видно лунку от лазерной абляции

Уран-свинцовый метод — один из самых старых и хорошо разработанных способов радиоизотопного датирования и, при хорошем исполнении, самый надёжный метод для образцов с возрастом порядка сотен миллионов лет. Позволяет получить точность в 0,1 % и даже лучше[13][14]. Датировать можно и образцы, близкие по возрасту к Земле, и образцы младше миллиона лет. Большая надёжность и точность достигаются благодаря использованию двух изотопов урана, цепочки распада которых кончаются разными изотопами свинца, а также благодаря некоторым свойствам циркона — минерала, обычно используемого для уран-свинцовых датировок.

Используются следующие превращения:

238U206Pb с периодом полураспада 4,47 млрд лет (ряд радия — см. Радиоактивные ряды), 235U207Pb с периодом полураспада 0,704 млрд лет (ряд актиния).

Иногда в дополнение к ним используют распад тория-232 (уран-торий-свинцовый метод):

232Th208Pb с периодом полураспада 14,0 млрд лет (ряд тория).

Все эти превращения идут во много стадий, но промежуточные нуклиды распадаются намного быстрее материнских.

Чаще всего для датировок уран-свинцовым методом используют циркон (ZrSiO4); в некоторых случаях — монацит, титанит, бадделеит[15]; реже — многие другие материалы, в том числе апатит, кальцит, арагонит[16], опал и горные породы, состоящие из смеси разных минералов. Циркон имеет большую прочность, стойкость к химическим воздействиям, высокую температуру закрытия и широко распространён в извержённых породах. В его кристаллическую решётку легко встраивается уран и не встраивается свинец, поэтому весь свинец в составе циркона обычно можно считать радиогенным[17]. В случае надобности количество нерадиогенного свинца можно рассчитать по количеству свинца-204, который не образуется при распаде изотопов урана[18].

Использование двух изотопов урана, распадающихся до разных изотопов свинца, даёт возможность определить возраст объекта даже в случае потери им некоторой части свинца (например, вследствие метаморфизма). Кроме того, можно определить возраст этого события метаморфизма.

Свинец-свинцовый метод

Основная статья: Свинец-свинцовый метод

Свинец-свинцовый метод обычно используется для определения возраста образцов, состоящих из смеси минералов (его преимущество в таких случаях перед уран-свинцовым методом связано с высокой подвижностью урана). Этот метод хорошо подходит для датировки метеоритов, а также земных пород, испытавших недавнюю потерю урана. Он основан на измерении содержания трёх изотопов свинца: 206Pb (образуется при распаде 238U), 207Pb (образуется при распаде 235U) и 204Pb (нерадиогенный).

Изменение со временем соотношения концентраций изотопов свинца выводится из следующих уравнений:

[ 207 P b ] t = [ 207 P b ] 0 + [ 235 U ] 0 ( e λ 235 t − 1 ) {\displaystyle {\left[^{207}\mathrm {Pb} \right]_{t}}={\left[^{207}\mathrm {Pb} \right]_{0}}+{\left[^{235}\mathrm {U} \right]_{0}}{\left({e^{\lambda _{235}t}-1}\right)}} [ 206 P b ] t = [ 206 P b ] 0 + [ 238 U ] 0 ( e λ 238 t − 1 ) {\displaystyle {\left[^{206}\mathrm {Pb} \right]_{t}}={\left[^{206}\mathrm {Pb} \right]_{0}}+{\left[^{238}\mathrm {U} \right]_{0}}{\left({e^{\lambda _{238}t}-1}\right)}} ,

где индекс t {\displaystyle t} означает концентрацию изотопа в момент измерений, а индекс 0 {\displaystyle 0}  — в начальный момент.

Удобно использовать не сами концентрации, а их отношения к концентрации нерадиогенного изотопа 204Pb.
Опуская квадратные скобки:

( 207 P b 204 P b ) t = ( 207 P b 204 P b ) 0 + ( 235 U 204 P b ) ( e λ 235 t − 1 ) {\displaystyle {\left({\frac {^{207}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{t}}={\left({\frac {^{207}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{0}}+{\left({\frac {^{235}\mathrm {U} }{^{204}\mathrm {Pb} }}\right)}{\left({e^{\lambda _{235}t}-1}\right)}} ( 206 P b 204 P b ) t = ( 206 P b 204 P b ) 0 + ( 238 U 204 P b ) ( e λ 238 t − 1 ) {\displaystyle {\left({\frac {^{206}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{t}}={\left({\frac {^{206}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{0}}+{\left({\frac {^{238}\mathrm {U} }{^{204}\mathrm {Pb} }}\right)}{\left({e^{\lambda _{238}t}-1}\right)}}

Разделив первое из этих уравнений на второе и учитывая, что современное отношение концентраций материнских изотопов урана 238U/235U почти одинаково для всех геологических объектов (принятое значение — 137,88),[Комм. 2][19][16][13] получим:

( 207 P b 204 P b ) t − ( 207 P b 204 P b ) 0 ( 206 P b 204 P b ) t − ( 206 P b 204 P b ) 0 = ( 1 137 , 88 ) ( e λ 235 t − 1 e λ 238 t − 1 ) {\displaystyle {\frac {\left({\frac {^{207}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{t}-\left({\frac {^{207}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{0}}{\left({\frac {^{206}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{t}-\left({\frac {^{206}\mathrm {Pb} }{^{204}\mathrm {Pb} }}\right)_{0}}}={\left({\frac {1}{137,88}}\right)}{\left({\frac {e^{\lambda _{235}t}-1}{e^{\lambda _{238}t}-1}}\right)}}

Далее строится график с отношениями 207Pb/204Pb и 206Pb/204Pb по осям. На этом графике точки, соответствующие образцам с разным исходным соотношением U/Pb, будут выстраиваться вдоль прямой (изохроны), наклон которой показывает возраст образца.

Свинец-свинцовым методом было определено время формирования планет Солнечной системы (то есть возраст Земли). Это впервые сделал Клэр Кэмерон Паттерсон в 1956 году по исследованиям метеоритов разных типов. Поскольку они представляют собой осколки планетезималей, которые прошли гравитационную дифференциацию, разные метеориты имеют разное значение U/Pb, что позволяет построить изохрону. Оказалось, что на эту изохрону ложится и точка, представляющая среднее соотношение изотопов свинца для Земли. Современное значение возраста Земли — 4,54 ± 0,05 млрд лет[15].

Калий-аргоновый метод

Основная статья: Калий-аргоновый метод

В этом методе используется распад изотопа 40K, который составляет 0,012 % природного калия. Он распадается в основном двумя способами[Комм. 3]:

  • β−-распад (вероятность 89,28(13) %[20], парциальный период полураспада[Комм. 4] 1,398 млрд лет):
19 40 K → 20 40 C a + e − + ν ¯ e ; {\displaystyle \mathrm {{}_{19}^{40}K} \rightarrow \mathrm {{}_{20}^{40}Ca} +e^{-}+{\bar {\nu }}_{e}\,;}
  • электронный захват (вероятность 10,72(13) %[20], парциальный период полураспада 11,64 млрд лет):
19 40 K + e − → 18 40 A r + ν e . {\displaystyle \mathrm {{}_{19}^{40}K} +e^{-}\rightarrow \mathrm {{}_{18}^{40}Ar} +{\nu }_{e}\,.}

Период полураспада 40K с учётом обоих путей распада равен 1,248(3) млрд лет[20]. Это позволяет датировать и образцы с возрастом, равным возрасту Земли, и образцы с возрастом в сотни, а иногда и десятки тысяч лет[15].

Калий — 7-й по содержанию элемент в земной коре, и многие извержённые и осадочные породы содержат большое количество этого элемента. Доля изотопа 40K в нём постоянна с хорошей точностью[15]. Для калий-аргонового датирования используются различные слюды, застывшая лава, полевые шпаты, глинистые минералы, а также многие другие минералы и горные породы. Застывшая лава годится и для палеомагнитных исследований. Поэтому калий-аргоновый метод (точнее, его разновидность — аргон-аргоновый метод) — основной метод калибровки шкалы геомагнитной полярности[15][21].

Основной продукт распада калия-40 — 40Ca — ничем не отличается от обычного (нерадиогенного) кальция-40, которого в исследуемых породах, как правило, много. Поэтому обычно анализируют содержание другого дочернего изотопа — 40Ar. Поскольку аргон — это инертный газ, он легко улетучивается из пород при нагреве до нескольких сотен градусов. Соответственно, калий-аргоновая датировка показывает время последнего разогрева образца до таких температур[15].

Основная проблема для калий-аргонового датирования, как и для других радиоизотопных методов, — обмен веществом с окружающей средой и трудности определения начального состава образца. Важно, чтобы образец в начальный момент не содержал аргон, а потом не терял его и не загрязнялся атмосферным аргоном. На это загрязнение можно сделать поправку, исходя из того, что в атмосферном аргоне есть, кроме 40Ar, и другой изотоп (36Ar), но из-за малости его количества (1/295 всего аргона) точность этой поправки невелика.

Есть усовершенствованный вариант калий-аргонового метода — 40Ar/39Ar-метод (аргон-аргоновый метод). По этому методу вместо содержания 40K определяется содержание 39Ar, который образуется из 39K при искусственном облучении нейтронами. Количество 40K можно однозначно определить из количества 39K за счёт постоянства изотопного состава калия. Преимущество этого способа связано с тем, что химические свойства 39Ar и 40Ar идентичны, так что содержание этих изотопов можно определить из одной навески образца одним и тем же способом. Но каждая аргон-аргоновая датировка требует калибровки с помощью образца известного возраста, облучённого тем же потоком нейтронов[22][23].

Сравнение калий-аргоновых датировок с уран-свинцовыми показывает, что калий-аргоновые обычно меньше примерно на 1 %. Вероятно, это объясняется неточностью принятого значения периода полураспада калия-40[15].

Рубидий-стронциевый метод

Основная статья: Рубидий-стронциевый метод

Принцип метода основан на β−-распаде изотопа 87Rb и превращении его в стабильный изотоп 87Sr:

37 87 R b → 38 87 S r + β − + ν ¯ e + Q ; {\displaystyle \mathrm {{}_{37}^{87}Rb} \rightarrow \mathrm {{}_{38}^{87}Sr} +{\beta }^{-}+{\bar {\nu }}_{e}+Q\,;}

где νe — электронное антинейтрино, Q — энергия распада. Период полураспада рубидия-87 равен 49,7(3) млрд лет, его природная изотопная распространённость составляет 27,83(2)%[20]. Распространённость рубидия в минералах горных пород определяется, в первую очередь, близостью ионных радиусов Rb+ (r = 0,148 нм) к ионам K+ (r = 0,133 нм). Это и позволяет иону Rb замещать ион K во всех важнейших породообразующих минералах.

Распространённость стронция обусловлена способностью иона Sr2+ (r = 0,113 нм) замещать ион Ca2+ (r = 0,101 нм), в кальцийсодержащих минералах (главным образом в плагиоклазе и апатите), а также возможностью его вхождения в решётку калиевых полевых шпатов на место иона K+. Накопление стронция-87 в минерале происходит по закону

( 87 S r 86 S r ) t = ( 87 S r 86 S r ) 0 + ( 87 R b 86 S r ) t ⋅ ( e λ t − 1 ) , {\displaystyle \left({\frac {^{87}\mathrm {Sr} }{^{86}\mathrm {Sr} }}\right)_{t}=\left({\frac {^{87}\mathrm {Sr} }{^{86}\mathrm {Sr} }}\right)_{0}+\left({\frac {^{87}\mathrm {Rb} }{^{86}\mathrm {Sr} }}\right)_{t}\cdot \left(e^{\lambda t}-1\right),}

где индекс t, как всегда, относится к современным отношениям концентраций изотопов в минерале, а 0 — к начальным отношениям. Решение этого уравнения относительно возраста t позволяет написать основное уравнение геохронологии применительно к Rb-Sr методу[24]:

t = 1 λ ln ⁡ ( ( 87 S r 86 S r ) t − ( 87 S r 86 S r ) 0 ( 87 R b 86 S r ) t + 1 ) , {\displaystyle t={\frac {1}{\lambda }}\ln \left({\frac {\left({\frac {^{87}\mathrm {Sr} }{^{86}\mathrm {Sr} }}\right)_{t}-\left({\frac {^{87}\mathrm {Sr} }{^{86}\mathrm {Sr} }}\right)_{0}}{\left({\frac {^{87}\mathrm {Rb} }{^{86}\mathrm {Sr} }}\right)_{t}}}+1\right),}

Изотопная распространённость радиогенного (87Sr) и нерадиогенного (86Sr) изотопов стронция, используемых в методе, равна соответственно 7,00(1)% и 9,86(1)%[20].

Самарий-неодимовый метод

Основная статья: Самарий-неодимовый метод

Самарий и неодим — редкоземельные элементы. Они менее мобильны, чем щелочные и щёлочноземельные элементы, такие как K, Rb, Sr и т. п., при гидротермальном изменении и химическом выветривании и метаморфизме. Поэтому самарий-неодимовый метод даёт более надежные датировки возраста горных пород, чем рубидий-стронциевый. Предложение об использовании Sm-Nd метода в геохронологии впервые сделал Г. Лагмайр (G. Lugmair, 1947). Он показал, что отношение 143Nd/144Nd — это индикатор изменений в относительном содержании 143Nd, обусловленного распадом 147Sm. В разработку, внедрение в геологическую практику Sm-Nd метода и обработку получаемых данных большой вклад внесли исследователи из США Де Паоло и Вассербург. У самария 7 природных изотопов (см. Изотопы самария), но только два из них (147Sm и 148Sm[Комм. 5]) радиоактивны. 147Sm превращается, испуская альфа-частицу, в 143Nd:

62 147 R b → 60 143 N d + α + Q ; {\displaystyle \mathrm {{}_{62}^{147}Rb} \rightarrow \mathrm {{}_{60}^{143}Nd} +{\alpha }+Q\,;}

Период полураспада 147Sm очень большой — 106,6(7) млрд лет[20]. Лучше всего самарий-неодимовый метод применим для вычисления возраста основных и ультраосновных пород, в том числе метаморфических.

Рений-осмиевый метод

Основная статья: Рений-осмиевый метод

Метод основан на бета-распаде рения-187 (период полураспада 43,3(7) млрд лет, природная изотопная распространённость η = 62,60(2) %[20]) в осмий-187 (η = 1,96(2) %[20]). Метод используется для датирования железо-никелевых метеоритов (рений, как сидерофильный элемент, склонен к концентрации в них) и молибденитовых месторождений (молибденит MoS2 в земной коре является минералом-концентратором рения, как и минералы тантала и ниобия). Осмий ассоциирует с иридием и встречается практически только в ультраосновных породах. Уравнение изохроны для Re-Os метода[25]:

( 187 O s 186 O s ) t = ( 187 O s 186 O s ) 0 + ( 187 R e 186 O s ) t ⋅ ( e λ 187 t − 1 ) . {\displaystyle \left({\frac {^{187}\mathrm {Os} }{^{186}\mathrm {Os} }}\right)_{t}=\left({\frac {^{187}\mathrm {Os} }{^{186}\mathrm {Os} }}\right)_{0}+\left({\frac {^{187}\mathrm {Re} }{^{186}\mathrm {Os} }}\right)_{t}\cdot \left(e^{\lambda _{187}t}-1\right).}

Лютеций-гафниевый метод

Основная статья: Лютеций-гафниевый метод

Метод основан на бета-распаде лютеция-176 (период полураспада 36,84(18) млрд лет, природная изотопная распространённость η = 2,599(13) %[20]) в гафний-176 (η = 5,26(7) %[20]). Гафний и лютеций имеют существенно различное геохимическое поведение. Для метода подходят минералы тяжёлых лантаноидов, такие как фергюсонит, ксенотим и т. п., а также апатит, ортит, сфен. Гафний является химическим аналогом циркония и концентрируется в цирконах, поэтому цирконы для этого метода неприменимы. Уравнение изохроны для лютеций-гафниевого метода[26]:

( 176 H f 177 H f ) t = ( 176 H f 177 H f ) 0 + ( 176 L u 177 H f ) t ⋅ ( e λ 176 t − 1 ) . {\displaystyle \left({\frac {^{176}\mathrm {Hf} }{^{177}\mathrm {Hf} }}\right)_{t}=\left({\frac {^{176}\mathrm {Hf} }{^{177}\mathrm {Hf} }}\right)_{0}+\left({\frac {^{176}\mathrm {Lu} }{^{177}\mathrm {Hf} }}\right)_{t}\cdot \left(e^{\lambda _{176}t}-1\right).}

Радиоуглеродный метод

Основная статья: Радиоуглеродный анализ

Метод основан на распаде углерода-14 и применяется чаще всего для объектов биологического происхождения. Он позволяет определить время, прошедшее с момента гибели биологического объекта и прекращения обмена углеродом с атмосферным резервуаром. Отношение содержания углерода-14 к стабильному углероду (14C/12C ~ 10−10%) в атмосфере и в тканях животных и растений, находящихся в равновесном обмене с ней, определяется потоком быстрых нейтронов в верхней атмосфере. Нейтроны, создаваемые космическими лучами, реагируют с ядрами атмосферного азота-14 по реакции n + 7 14 N → 6 14 C + p , {\displaystyle n+\mathrm {^{14}_{7}N} \rightarrow \mathrm {^{14}_{6}C} +p,} образуя в среднем около 7,5 кг углерода-14 в год. Период полураспада 14С равен 5700 ± 30 лет[20]; существующие методики позволяют определять концентрации радиоуглерода в биообъектах на уровне приблизительно в 1000 раз меньше равновесной атмосферной концентрации, то есть с возрастом до 10 периодов полураспада 14С (около 60 тыс. лет).

ru.wikipedia.org

О точности радиоуглеродного метода датирования

Все, что дошло до нас от язычества, окутано густым туманом; оно принадлежит к тому промежутку бремени, который мы не в силах измерить. Мы знаем, что оно древнее христианства, но на два года, на двести лет или на целое тысячелетие – здесь мы можем только гадать. Расмус Ниерап, 1806.

Многие из нас запуганы наукой. Радиоуглеродная датировка как один из результатов развития ядерной физики является примером такого феномена. Этот метод имеет важное значение для разных и независимых научных дисциплип, таких, как гидрология, геология, наука об атмосфере и археология. Однако мы оставляем понимание принципов радиоуглеродной датировки научным специалистам и слепо соглашаемся с их выводами из уважения к точности их оборудования и восхищения их интеллектом.

На самом деле принципы радиоуглеродной датировки поразительно просты и легкодоступны. Более того, представление о радиоуглеродной датировке как о «точной науке» является ошибочным, и, по правде говоря, лишь немногие ученые придерживаются такого мнения. Проблема в том, что представители многих дисциплин, пользующиеся радиоуглеродной датировкой в хронологических целях, не понимают ее природы и назначения. Давайте разберемся в этом.

Принципы радиоуглеродной датировки
Уильям Фрэнк Либби и члены его команды разработали принципы радиоуглеродной датировки в 1950-е годы. К 1960 году их работа была завершена, и в декабре этого года Либби был номинирован на Нобелевскую премию по химии. Один из ученых, участвовавших в его выдвижении, отметил:

«Редко случалось так, что одно открытие в области химии оказывало такое влияние на разные области человеческих знаний. Очень редко отдельное открытие привлекало столь широкий интерес».

Либби обнаружил, что нестабильный радиоактивный изотоп углерода (С 14) с предсказуемой скоростью распадается на стабильные изотопы углерода (С12 и С13). Все три изотопа встречаются в атмофере в естественном виде в следующих пропорциях; С12 – 98,89%, С13 – 1,11% и С14 – 0,00000000010%.

Стабильные изотопы углерода С12 и С13 образовались вместе со всеми остальными атомами, из которых состоит наша планета, то есть очень и очень давно. Изотоп С14 образуется в микроскопических количествах в результате еже- , дневной бобмардировки солнечной атмосферы космическими лучами. При соударении с определенными атомами космические лучи разрушают их, в результате чего нейтроны этих атомов переходят в свободное состояние в земной атмосфере.

Изотоп С14 образуется, когда один из таких свободных нейтронов сливается с ядром атома азота. Таким образом, радиоуглерод представляет собой «изотоп Франкенштейна», сплав разных химических элементов. Затем атомы С14, которые образуются с постоянной скоростью, подвергаются окислению и проникают в биосферу в процессе фотосинтеза и естественной цепочки питания.

В организмах всех живых существ отношение изотопов С12 и С14 равно атмосферному отношению этих изотопов в их географическом регионе и поддерживается скоростью их метаболизма. Однако после смерти организмы перестают накапливать углерод, и поведение изотопа С14 с этого момента становится интересным. Либби установил, что период полураспада С14 составляет 5568 лет; еще через 5568 лет распадается половина оставшихся атомов изотопа.

Таким образом, поскольку первоначальное отношение изотопов С12 и С14 является геологической постоянной, возраст образца можно определить, измерив количество остаточного изотопа С14. К примеру, если в образце присутствует некоторое первоначальное количество С14, значит, дата смерти организма определяется двумя периодами полураспада (5568 + 5568), что соответствует возрасту 10 146 лет.

В этом заключается основной принцип радиоуглеродной датировки как инструмента археологии. Радиоуглерод абсорбируется в биосфере; он прекращает накапливаться со смертью организма и распадается с определенной скоростью, которую можно измерить.

Иными словами, соотношение С14/С12 постепенно падает. Таким образом мы получаем «часы», которые начинают идти с момента смерти живого существа. Очевидно, что эти часы действуют только для мертвых тел, которые когда-то были живыми существами. Например, их нельзя использовать для определения возраста вулканических пород.

Скорость распада С14 такова, что половина этого вещества превращается обратно в N14 в течение 5730±40 лет. Это и есть так называемый «период полураспада». За два периода полураспада, то есть за 11460 лет, останется только четверть изначального количества. Таким образом, если соотношение С14/С12 в образце составляет четверть от соотношения в современных живых организмах, теоретически этот образец имеет возраст 11460 лет. Возраст же предметов старше 50 000 лет с помощью радиоуглеродного метода определить теоретически невозможно. Поэтому радиоуглеродное датирование не может показать возраст в миллионы лет. Если проба содержит С14, это уже свидетельствует о том, что ее возраст меньше миллионов лет.

Однако все не так просто. Во-первых, растения хуже усваивают углекислый газ, содержащий С14. Следовательно, они накапливают его меньше ожидаемого и поэтому при тестировании кажутся старше, чем есть на самом деле. Более того, различные растения по-разному усваивают С14, и на это тоже следует делать поправку.2

Во-вторых, соотношение С14/С12 в атмосфере не всегда было постоянным – например, оно снизилось с наступлением индустриальной эпохи, когда вследствие сжигания огромных количеств органического топлива высвободилась масса углекислого газа, обедненного С14. Соответственно, организмы, умершие в этот период, в рамках радиоуглеродного датирования кажутся старше. Затем произошло увеличение содержания С14О2, связанное с наземными ядерными испытаниями 1950-х годов,3 вследствие чего организмы, умершие в этот период, стали казаться моложе, чем были на самом деле.

Измерения содержания С14 в объектах, чей возраст точно установлен историками (например, зерно в гробницах с указанием даты захоронения) позволяют оценить уровень С14 в атмосфере того времени и, таким образом, частично «подправить ход» радиоуглеродных «часов». Соответственно, радиоуглеродное датирование, проведенное с учетом исторических данных, может дать весьма плодотворные результаты. Однако даже с такой «исторической настройкой» археологи не считают даты, полученные радиоуглеродным методом, абсолютным – из-за частых аномалий. Они больше полагаются на методы датирования, связанные с историческими летописями.

За пределами исторических данных «настройка» «часов» С14 не представляется возможной

В лаборатории
С учетом всех этих неопровержимых фактов крайне странно видеть в журнале «Радиоуглерод» (где публикуются результаты радиоуглеродных исследований по всему миру) следующее утверждение:

«Шесть уважаемых лабораторий выполнили 18 анализов возраста древесины из Шелфорда в графстве Чешир. Оценки варьируют от 26 200 до 60 000 лет (до настоящего времени), разброс составляет 34 600 лет».

Вот еще один факт: хотя теория радиоуглеродной датировки звучит убедительно, когда ее принципы применяются к лабораторным образцам, в игру вступает человеческий фактор. Это приводит к ошибкам, порой очень значительным. Кроме того, лабораторные образцы загрязняются фоновым излучением, изменяющим остаточный уровень С14, который подвергается измерению.

Как указал Ренфрю в 1973-м и Тейлор в 1986 году, метод радиоуглеродной датировки опирается на ряд необоснованных предположений, сделанных Либби во время разработки его теории. К примеру, в последние годы было много дискуссий о периоде полураспада С14, якобы составляющем 5568 лет. В наши дни большинство ученых сходится на том, что Либби ошибался и что период полураспада С14 на самом деле составляет примерно 5730 лет, Расхождение в 162 года приобретает большое значение при датировке образцов тысячелетней давности.

Но вместе с Нобелевской премией по химии к Либби пришла полная уверенность в его новой системе. Его радиоуглеродные датировки археологических образцов из Древнего Египта уже были датированы, поскольку древние египтяне тщательно следили за своей хронологией. К сожалению, радиоуглеродный анализ давал слишком заниженный возраст, в некоторых случаях на 800 лет меньше, чем по данным исторической летописи. Но Либби пришел к поразительному выводу:

«Распределение данных показывает, что древнеегипетские исторические датировки до начала второго тысячелетия до нашей эры слишком завышены и, возможно, превышают истинные на 500 лет в начале третьего тысячелетия до нашей эры».

Это классический случай научного самомнения и слепой, почти религиозной веры в превосходство научных методов над археологическими. Либби ошибался, радиоуглеродный метод подвел его. Теперь эта проблема решена, но самопровозглашенная репутация метода радиоуглеродной датировки по-прежнему превышает уровень его надежности.

Мои исследования показывают, что с радиоуглеродной датировкой связаны две серьезные проблемы, которые и в наши дни могут привести к большим недоразумениям. Это (1) загрязнение образцов и (2) изменение уровня С14 в атмосфере в течение геологических эпох.

Эталоны радиоуглеродного датирования.

Значение эталона, принятого при расчёте радиоуглеродного возраста образца, прямо влияет на полученную величину. По результатам детального анализа опубликованной литературы установлено, что при радиоуглеродном датировании применялось несколько эталонов. Наиболее известные из них: эталон Андерсона (12,5 dpm/g), эталон Либби (15,3 dpm/g) и современный эталон (13,56 dpm/g).

Датирование ладьи фараона.

Древесина ладьи фараона Sesostris III датировалась радиоуглеродным методом на основе трёх эталонов. При датировании древесины в 1949 году на основе эталона (12,5 dpm/g) получен радиоуглеродный возраст 3700 +/- 50 ВР лет. Позднее Либби датировал древесину на основе эталона (15,3 dpm/g) . Радиоуглеродный возраст не изменился. В 1955 году Либби повторно датировал древесину ладьи на основе эталона (15,3 dpm/g) и получил радиоуглеродный возраст 3621 +/-180 ВР лет. При датировании древесины ладьи в 1970 году применён эталон (13,56 dpm/g) [2]. Радиоуглеродный возраст почти не изменился и составил 3640 ВР лет. Приведённые нами фактические данные по датированию ладьи фараона можно проверить по соответствующим ссылкам на научные публикации.

Цена вопроса.

Получение практически одного и того же радиоуглеродного возраста древесины ладьи фараона : 3621-3700 ВР лет на основе применения трёх эталонов, значения которых отличаются существенно, физически невозможно. Применение эталона (15,3 dpm/g) автоматически даёт увеличение возраста датируемого образца на 998 лет, по сравнению с эталоном (13,56 dpm/g), и на 1668 лет, по сравнению с эталоном (12,5 dpm/g). Из этой ситуации имеется всего два выхода. Признание того, что:

- при датировании древесины ладьи фараона Sesostris III были осуществлены манипуляции с эталонами (древесина вопреки декларациям, датировалась на основе одного и того же эталона);

- ладья фараона Sesostris III волшебная.

Заключение.

Суть рассмотренных явлений, названных манипуляциями, выражается одним словом – фальсификация.

После смерти содержание C12 остается постоянным, а содержание C14 уменьшается

Загрязнение образцов
Мэри Левайн объясняет:

«Загрязнением называется наличие в образце органического материала чуждого происхождения, который не был сформирован вместе с материалом образца».

На многих фотографиях раннего периода радиоуглеродного анализа изображены научные специалисты, которые курят сигареты во время сбора или обработки образцов. Не слишком умно с их стороны! Как указывает Ренфрю, «уроните щепотку пепла на ваши образцы, подготовленные к анализу, и вы получите радиоуглеродный возраст табака, из которого была сделана ваша сигарета».

Хотя в наши дни такая методологическая некомпетентность считается недопустимой, археологические образцы все равно страдают от загрязнения. Известные виды загрязнений и способы борьбы с ними обсуждаются в статье Тейлора (1987). Он делит загрязнения на четыре главные категории: 1) физически устранимые, 2) растворимые в кислотах, 3) растворимые в щелочах, 4) растворимые в растворителях. Все эти загрязнения, если не устранить их, сильно влияют на лабораторное определение возраста образца.

X. Э. Гоув, один из изобретателей метода акселераторной масс-спектрометрии (AMS), сделал радиоуглеродную датировку Туринской плащаницы. Он пришел к выводу, что волокна ткани, использованные для изготовления плащаницы, датируются 1325 годом.

Хотя Гоув и его коллеги совершенно уверены в аутентичности своего определения, многие, по очевидным причинам, считают возраст Туринской плащаницы гораздо более почтенным. Гоув со своими единомышленниками дал достойный ответ всем критикам, и если бы мне пришлось делать выбор, то я бы рискнул сказать, что научная датировка Туринской плащаницы, скорее всего, является точной. Но в любом случае, ураган критики, обрушившийся на этот конкретный проект, показывает, как дорого может стоить ошибка при радиоуглеродной датировке и с каким подозрением некоторые ученые относятся к этому методу.

Утверждалось, что образцы могли подвергнуться загрязнению более молодым органическим углеродом; методы очистки могли пропустить следы современных загрязнений. Роберт Хеджес из Оксфордского университета отмечает, что

«нельзя совершенно исключить небольшую систематическую погрешность».

Интересно, назвал бы он расхождение датировок, полученных разными лабораториями по образцу древесины из Шелфорда, «небольшой систематической погрешностью»? Разве не похоже, что нас снова дурачат ученой риторикой и заставляют поверить в совершенство существующих методов?

Леонсио Гарза-Вальдес, безусловно, придерживается такого мнения по отношению к датировке Туринской плащаницы. Все древние ткани покрыты биопластической пленкой в результате жизнедеятельности бактерий, которая, по мнению Гарза-Вальдеса, сбивает с толку радиоуглеродный анализатор. Фактически возраст Туринской плащаницы вполне может составлять 2000 лет, так как ее радиоуглеродную датировку нельзя считать окончательной. Необходимы дальнейшие исследования. Интересно отметить, что Гоув (хотя он расходится во мнениях с Гарза-Вальдесом) согласен, что такая критика служит основанием для новых исследований.

Цикл радиоуглерода (14С) в атмосфере, гидросфере и биосфере Земли

Уровень С14 в земной атмосфере
Согласно «принципу одновременности» Либби, уровень С14 в любом конкретном географическом регионе является постоянным на всем протяжении геологической истории. Эта предпосылка была жизненно необходима для достоверности радиоуглеродного анализа на раннем этапе его развития. Действительно, для надежного измерения остаточного уровня С14 вам нужно знать, какое количество этого изотопа присутствовало в организме на момент его смерти. Но эта предпосылка, по мнению Ренфрю, является ошибочной:

«Однако теперь известно, что пропорциональное отношение радиоуглерода к обычному С12 не оставалось постоянным во времени и что до 1000 года до нашей эры отклонения так велики, что радиоуглеродные датировки могут заметно расходиться с действительностью».

Дендрологические исследования (изучение древесных колец) убедительно показывают, что уровень С14 в земной атмосфере за последние 8000 лет был подвержен значительным флуктуациям. Значит, Либби выбрал ложную константу и его исследования были основаны на ошибочных предположениях.

Возраст колорадской сосны, растущей в юго-западных регионах США, может достигать нескольких тысяч лет. Некоторые деревья, еще живые в наши дни, появились на свет 4000 лет назад. Кроме того, по бревнам, собранным в тех местах, где росли эти деревья, можно протянуть летопись древесных колец еще на 4000 лет в прошлое. Другими деревьями-долгожителями, полезными для дендрологических исследований, являются дуб и калифорнийская секвойя.

Как известно, ежегодно на срезе живого древесного ствола нарастает новое годичное кольцо. Подсчитав годичные кольца, можно узнать возраст дерева. Логично предположить, что уровень С14 в годичном кольце 6000-летнего возраста будет аналогичен уровню С14 в современной атмосфере. Но это не так.

К примеру, анализ годичных колец показал, что уровень С14 в земной атмосфере 6000 лет назад был существенно выше, чем сейчас. Соответственно, радиоуглеродные образцы, датируемые этим возрастом, оказались заметно моложе, чем на самом деле, на основании дендрологического анализа. Благодаря работе Ханса Суисса были составлены диаграммы коррекции уровня С14 для компенсации его флуктуации в атмосфере в разные периоды времени. Однако это значительно снизило достоверность радиоуглеродных датировок образцов, возраст которых превышает 8000 лет. У нас просто нет данных о содержании радиоуглерода в атмосфере до этой даты.

Ускорительный масс-спектрометр Университета Аризоны (г. Тусон, штат Аризона, США) производства компании National Electrostatics Corporation: а – схема, б – пульт управления и источник ионов С¯, в – ускорительный танк, г – детектор изотопов углерода. Фото Дж.С. Бурра

Когда установленный «возраст» отличается от ожидаемого, исследователи поспешно находят повод объявить результат датирования недействительным. Широкая распространенность этого апостериорного доказательства показывает, что у радиометрического датирования имеются серьезные проблемы. Вудморапп приводит сотни примеров уловок, к которым прибегают исследователи, пытаясь объяснить «неподходящие» значения возраста.

Так, ученые пересмотрели возраст ископаемых останков Australopithecus ramidus.9 Большинство образцов базальта, наиболее близко подходящего к слоям, в которых были найдены эти окаменелости, показало возраст около 23 миллионов лет по методу «аргон-аргон». Авторы решили, что эта цифра «слишком велика», если исходить из их представлений о месте этих окаменелостей в глобальной эволюционной схеме. Они рассмотрели базальт, располагавшийся подальше от окаменелостей, и, отобрав 17 из 26 образцов, получили приемлемый максимальный возраст в 4,4 миллиона лет. Остальные девять образцов показали опять-таки гораздо больший возраст, но экспериментаторы решили, что дело в загрязнении породы, и отвергли эти данные. Таким образом, на методы радиометрического датирования существенно влияет доминирующее в научных кругах мировоззрение «долгих эпох».

Аналогичная история связана с установлением возраста черепа примата (этот череп известен как образец KNM-ER 1470).10, 11 Поначалу был получен результат 212–230 млн. лет, который, исходя из окаменелостей, был признан неверным («людей в то время еще не было»), после чего были предприняты попытки установления возраста вулканических пород в этом регионе. Через несколько лет, после опубликования нескольких различных результатов исследований, «сошлись» на цифре 2,9 млн. лет (хотя эти исследования включали в себя и отделение «хороших» результатов от «плохих» – как и в случае с Australopithecus ramidus).

Исходя из предвзятых представлений об эволюции человека, исследователи никак не могли примириться с мыслью, что череп 1470 «настолько стар». После изучения ископаемых останков свиньи в Африке антропологи с готовностью поверили в то, что череп 1470 на самом деле гораздо моложе. После того, как научная общественность утвердилась в этом мнении, дальнейшие исследования пород еще больше снизили радиометрический возраст этого черепа – до 1,9 млн. лет – и вновь отыскались данные, «подтверждающие» очередную цифру. Вот такая «игра в радиометрическое датирование»…

Мы не утверждаем, что эволюционисты сговорились подгонять все данные под наиболее удобный для себя результат. Конечно же, в норме дело обстоит совсем не так. Беда в другом: все данные наблюдения должны соответствовать доминирующей в науке парадигме. Эта парадигма – или, скорей, вера в миллионы лет эволюции от молекулы до человека – настолько прочно укрепилась в сознании, что никто не позволяет себе подвергнуть ее сомнению; напротив, говорят о «факте» эволюции. Вот под эту парадигму и должны подходить абсолютно все наблюдения. В результате исследователи, которые в глазах общественности выглядят «объективными и беспристрастными учеными», бессознательно отбирают именно те результаты наблюдений, которые согласуются с верой в эволюцию.

Нельзя забывать, что прошлое недоступно для нормального экспериментального исследования (серии опытов, проводимые в настоящем). Ученые не могут экспериментировать с событиями, происходившими когда-то. Измеряется не возраст пород – измеряются концентрации изотопов, причем их-то как раз можно измерить с высокой точностью. А вот «возраст» определяется уже с учетом предположений о прошлом, доказать которые невозможно.

Мы должны всегда помнить слова Бога, обращенные к Иову: «Где был ты, когда Я полагал основания земли?» (Иов 38:4).

Те, кто имеет дело с неписаной историей, собирают информацию в настоящем и таким образом пытаются воссоздать прошлое. При этом уровень требований к доказательствам гораздо ниже, чем в эмпирических науках, таких, как физика, химия, молекулярная биология, физиология и т.д.

Уильяме (Williams), специалист по превращениям радиоактивных элементов в окружающей среде, установил 17 изъянов в методах изотопного датирования (по результатам этого датирования были изданы три весьма солидные труда, позволившие определить возраст Земли приблизительно в 4,6 миллиарда лет).12 Джон Вудморапп остро критикует эти методы датирования8 и разоблачает сотни связанных с ними мифов. Он убедительно доказывает, что немногие «хорошие» результаты, оставшиеся после того, как «плохие» данные были отфильтрованы, можно легко объяснить удачным совпадением.

«Какой возраст предпочитаете?»

В анкетах, предлагаемых радиоизотопными лабораториями, обычно спрашивается: «Каким, по-вашему, должен быть возраст данного образца?». Но что это за вопрос? В нем не возникало бы нужды, если бы техники датирования были абсолютно надежны и объективны. Вероятно, дело в том, что лаборатории знают о распространенности аномальных результатов и потому пытаются выяснить, насколько «хороши» получаемые ими данные.

Проверка методов радиометрического датирования

Если бы методы радиометрического датирования могли действительно объективно определять возраст пород, они срабатывали бы и в ситуациях, когда возраст нам точно известен; кроме того, различные методы давали бы согласованные результаты.

Методы датирования должны показывать достоверные результаты для предметов известного возраста

Есть целый ряд примеров, когда методы радиометрического датирования неверно устанавливали возраст пород (этот возраст был точно известен заранее). Один из таких примеров – калий-аргоновое «датирование» пяти потоков андезитовой лавы с горы Нгаурухо в Новой Зеландии. Хотя было известно, что лава один раз текла в 1949 году, три раза – в 1954 и еще один раз – в 1975, «установленные возрасты» варьировали от 0,27 до 3,5 млн. лет.

Все тот же ретроспективный метод породил следующее объяснение: когда порода отвердела, в ней остался «лишний» аргон из-за магмы (расплавленной породы). В светской научной литературе приводится масса примеров тому, как избыток аргона приводит к «лишним миллионам лет» при датировании пород известного исторического возраста.14 Источником избыточного аргона, по всей видимости, служит верхняя часть мантии Земли, расположенная непосредственно под земной корой. Это вполне соответствует теории «молодой Земли» – у аргона было слишком мало времени, он просто не успел высвободиться. Но если избыток аргона привел к столь вопиющим ошибкам в датировании пород известного возраста, почему мы должны доверять этому же методу при датировании пород, возраст которых неизвестен?!

Другие методы – в частности, использование изохрон, – включают в себя различные гипотезы о начальных условиях; но ученые все больше убеждаются в том, что даже такие «надежные» методы тоже приводят к «плохим» результатам. И тут снова выбор данных основан на предположении исследователя о возрасте той или иной породы.

Доктор Стив Остин (Steve Austin), геолог, взял пробы базальта из нижних слоев Большого Каньона и из потоков лавы на краю каньона.17 По эволюционной логике, базальт у края каньона должен быть на миллиард лет моложе базальта из глубин. Стандартный лабораторный анализ изотопов с применением изохронного датирования «рубидий-стронций» показал, что сравнительно недавний поток лавы на 270 млн. лет старше базальта из недр Большого Каньона – что, конечно же, абсолютно невозможно!

Проблемы методики

Изначально идея Либби опиралась на следующие гипотезы:

  1. 14C образуется в верхних слоях атмосферы под действием космических лучей, затем перемешивается в атмосфере, входя в состав углекислого газа. При этом процентное содержание 14C в атмосфере является постоянным и не зависит ни от времени, ни от места, несмотря на неоднородность самой атмосферы и распад изотопов.
  2. Скорость радиоактивного распада является постоянной величиной, измеряемой периодом полураспада в 5568 лет (предполагается, что за это время половина изотопов 14C превращается в 14N).
  3. Животные и растительные организмы строят свои тела из углекислоты, добываемой из атмосферы, и при этом живые клетки содержат тот же процент изотопа 14C, что находится в атмосфере.
  4. По смерти организма его клетки выходят из цикла углеродного обмена, но атомы изотопа 14C продолжают превращаться в атомы стабильного изотопа 12C по экспоненциальному закону радиоактивного распада, что и позволяет рассчитать время, прошедшее со времени смерти организма. Это время называется «радиоуглеродным возрастом» (или, для краткости, «РУ-возрастом»).

У этой теории, по мере накопления материала, стали появляться контрпримеры: анализ недавно умерших организмов иногда даёт очень древний возраст, или, наоборот, проба содержит столь огромное количество изотопа, что вычисления дают отрицательный РУ-возраст. Некоторые заведомо древние предметы имели молодой РУ-возраст (такие артефакты объявлялись поздними подделками). В итоге оказалось, что РУ-возраст далеко не всегда совпадает с истинным возрастом в тех случаях, когда истинный возраст можно проверить. Такие факты приводят к обоснованным сомнениям в случаях, когда РУ-метод применяется для датирования органических предметов неизвестного возраста, и РУ-датировка не может быть проверена. Случаи ошибочного определения возраста объясняются следующими известными недостатками теории Либби (эти и иные факторы проанализированы в книге М. М. Постникова «Критическое исследование хронологии древнего мира, в 3-х томах»,— М.: Крафт+Леан, 2000, в томе 1, стр. 311—318, написанной в 1978 году):

  1. Непостоянство процентного содержания 14C в атмосфере. Содержание 14C зависит от космического фактора (интенсивность солнечного излучения) и земного (поступление в атмосферу «старого» углерода из-за горения и гниения древней органики, возникновения новых источников радиоактивности, колебаний магнитного поля Земли). Изменение этого параметра на 20 % влечёт ошибку в РУ-возрасте почти в 2 тысячи лет.
  2. Не доказано однородное распределение 14C в атмосфере. Скорость перемешивания атмосферы не исключает возможности существенных различий содержания 14C в разных географических регионах.
  3. Скорость радиоактивного распада изотопов может быть определена не вполне точно. Так, со времён Либби период полураспада 14C по официальным справочникам «изменился» на сотню лет, то есть, — на пару процентов (этому соответствует изменение РУ-возраста на полторы сотни лет). Высказывается предположение, что значение периода полураспада значительно (в пределах нескольких процентов) зависит от экспериментов, в которых он определяется.
  4. Изотопы углерода не являются вполне эквивалентными, клеточные мембраны могут использовать их избирательно: некоторые абсорбировать 14C, некоторые, наоборот, избегать его. Поскольку процентное содержание 14C ничтожно (один атом 14C к 10 миллиардам атомов 12C), даже незначительная избирательность клетки в изотопном отношении влечёт большое изменение РУ-возраста (колебание на 10 % приводит к ошибке примерно 600 лет).
  5. По смерти организма его ткани не обязательно выходят из углеродного обмена, участвуя в процессах гниения и диффузии.
  6. Содержание 14C в предмете может быть неоднородным. Со времени Либби физики-радиоуглеродчики научились очень точно определять содержание изотопа в образце; заявляют даже, что они способны пересчитать отдельные атомы изотопа. Разумеется, такой подсчёт возможен только для небольшого образца, но в этом случае возникает вопрос — насколько точно этот небольшой образец представляет весь предмет? Насколько однородно содержание изотопа в нём? Ведь ошибки в несколько процентов приводят к столетним изменениям РУ-возраста.

Резюме
Радиоуглеродная датировка – это развивающийся научный метод. Однако на каждом этапе его развития ученые безоговорочно поддерживали его общую достоверность и замолкали лишь после выявления серьезных ошибок в оценках или в самом методе анализа. Не стоит удивляться ошибкам, если учитывать количество переменных, которые должен принять во внимание ученый: атмосферные флуктуации, фоновое излучение, рост бактерий, загрязнение и человеческая ошибка.

Как часть представительного археологического исследования, радиоуглеродная датировка по-прежнему имеет крайне важное значение; просто ее нужно поместить в культурную и историческую перспективу. Разве ученый имеет право сбрасывать со счетов противоречащие археологические свидетельства только потому, что его радиоуглеродная датировка указывает на другой возраст? Это опасно. Фактически многие египтологи поддержали предположение Либби о том, что хронология Древнего Царства составлена неправильно, так как это было «научно доказано». На самом деле Либби ошибался.

Радиоуглеродная датировка полезна в качестве дополнения к другим данным, и в этом заключается ее сильная сторона. Но пока не наступит день, когда все переменные окажутся под контролем, а все ошибки будут устранены, радиоуглеродные датировки не получат окончательного слова на археологических раскопках.
источники
Глава из книги К. Хэма, Д. Сарфати, К. Виланда под ред. Д. Баттена
Грэм Хэнкок: . М., 2006. Стр. 692-707.

Взято здесь

liveinternet.ru

Читайте также