Определение скорости Света

Скорость света

Точные значения Метров в секунду Планковских единиц Приблизительные значения километров в секунду километров в час миль в секунду миль в час астрономических единиц в день Приблизительное время путешествия светового сигнала Расстояние один фут один метр один километр одна статутная миля от геостационарной орбиты до Земли длина экватора Земли от Луны до Земли от Солнца до Земли (1 а. е.) от Вояджера-1 до Земли Один световой год один парсек от Проксимы Центавра до Земли от Альфы Центавра до Земли от ближайшей галактики (Карликовой галактики в Большом Псе) до Земли через Млечный Путь от Галактики Андромеды до Земли от самой удалённой известной галактики до Земли
Указано расстояние от Солнца до Земли, равное 150 миллионам километров.
Солнечному свету требуется в среднем 8 минут 17 секунд[Прим. 1], чтобы достигнуть Земли

299 792 458

1

300 000

1,08 млрд

186 000

671 млн

173

Время

1,0 нс

3,3 нс

3,3 мкс

5,4 мкс

119 мс

134 мс

1,255 с

8,3 мин.

19 часов и 5 минут (на январь 2017)[1]

1 год

3,26 лет

4,24 лет

4,37 лет

25 000 лет

100 000 лет

2,5 млн лет

13 млрд лет[2]

Ско́рость све́та в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме[Прим. 2]. В физике традиционно обозначается латинской буквой « c {\displaystyle c} » (произносится как «цэ»). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом[3]. Из постулата причинности (любое событие может оказывать влияние только на события, происходящие позже него и не может оказывать влияние на события, произошедшие раньше него[4][5][6]) и постулата специальной теории относительности о независимости скорости света в вакууме от выбора инерциальной системы отсчета (cкорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[7]) следует, что скорость любого сигнала и элементарной частицы не может превышать скорость света[8][9][6]. Таким образом, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

В вакууме (пустоте)

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году[Прим. 3].

На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или 1 079 252 848,8 км/ч. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[11].

В природе со скоростью света распространяются (в вакууме):

  • собственно, видимый свет и другие виды электромагнитного излучения (радиоволны, рентгеновские лучи, гамма-кванты и др.);
  • предположительно — гравитационные волны.

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света[Прим. 4], но всё же не достигающую её точно. Например, околосветовую скорость имеют массивные частицы, полученные на ускорителе или входящие в состав космических лучей.

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний» частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно. Однако и в этом случае сверхсветовой передачи информации не происходит, поскольку для передачи информации таким способом необходимо привлечь дополнительный классический канал передачи со скоростью света[Прим. 5].

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой)[12].

В прозрачной среде

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде ( λ = c ν {\displaystyle \lambda ={\frac {c}{\nu }}} ). Эта скорость обычно (но не обязательно) меньше c {\displaystyle c} . Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды.

Групповая скорость света определяется как скорость распространения биений между двумя волнами с близкой частотой и в равновесной среде всегда меньше c {\displaystyle c} . Однако в неравновесных средах, например, сильно поглощающих, она может превышать c {\displaystyle c} . При этом, однако, передний фронт импульса все равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.

Фундаментальная роль в физике

Фактор Лоренца (Лоренц-фактор) γ {\displaystyle \gamma } как функция скорости. Он растет от 1 (для нулевой скорости) до бесконечности (с приближением v {\displaystyle v} к c {\displaystyle c} ).

Скорость, с которой световые волны распространяются в вакууме, не зависит ни от движения источника волн, ни от системы отсчёта наблюдателя[Прим. 6]. Эйнштейн постулировал такую инвариантность скорости света в 1905 году[13].Он пришел к этому выводу на основании теории электромагнетизма Максвелла и отсутствия доказательств существования светоносного эфира[14].

Инвариантность скорости света неизменно подтверждается множеством экспериментов[15]. Существует возможность проверить экспериментально лишь то, что скорость света в «двустороннем» эксперименте (например, от источника к зеркалу и обратно) не зависит от системы отсчёта, поскольку невозможно измерить скорость света в одну сторону (например, от источника к удалённому приёмнику) без дополнительных договоренностей относительно того, как синхронизировать часы источника и приёмника. Однако, если применить для этого синхронизацию Эйнштейна, односторонняя скорость света становится равной двусторонней по определению[16][17].

Специальная теория относительности исследует последствия инвариантности c {\displaystyle c} в предположении, что законы физики одинаковы во всех инерциальных системах отсчёта[18][19]. Одним из последствий является то, что c {\displaystyle c}  — это та скорость, с которой должны двигаться в вакууме все безмассовые частицы и волны (в частности, и свет).

Специальная теория относительности имеет много экспериментально проверенных последствий, которые противоречат интуиции[20]. Такие последствия включают: эквивалентность массы и энергии ( E 0 = m c 2 ) {\displaystyle (E_{0}=mc^{2})} , сокращение длины (сокращение объектов во время движения)[Прим. 7] и замедление времени (движущиеся часы идут медленнее). Коэффициент γ {\displaystyle \gamma } , на которое сокращается длина и замедляется время, известен как фактор Лоренца (Лоренц-фактор) γ = 1 1 − v 2 c 2 {\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} , где v {\displaystyle v}  — скорость объекта. Для скоростей гораздо меньших, чем c {\displaystyle c} (например, для скоростей, с которыми мы имеем дело каждый день) разница между γ {\displaystyle \gamma } и 1 настолько мала, что ею можно пренебречь. В этом случае специальная теория относительности хорошо аппроксимируется относительностью Галилея. Но на релятивистских скоростях разница увеличивается и приближается к бесконечности с приближением v {\displaystyle v} к c {\displaystyle c} .

Объединение результатов специальной теории относительности требует выполнения двух условий: (1) пространство и время являются единой структурой, известной как пространство-время (где c {\displaystyle c} связывает единицы измерения пространства и времени), и (2) физические законы удовлетворяют требованиям особой симметрии, которая называется инвариантность Лоренца (Лоренц-инвариантность), формула которой содержит параметр c {\displaystyle c} [23]. Инвариантность Лоренца встречается повсеместно в современных физических теориях, таких как квантовая электродинамика, квантовая хромодинамика, стандартная модель физики элементарных частиц и общая теория относительности. Таким образом, параметр c {\displaystyle c} встречается повсюду в современной физике и появляется во многих смыслах, которые не имеют отношения собственно к свету. Например, общая теория относительности предполагает, что гравитация и гравитационные волны распространяются со скоростью c {\displaystyle c} [24][25]. В неинерциальных системах отсчёта (в гравитационно искривленном пространстве или в системах отсчёта, движущихся с ускорением), локальная скорость света также является постоянной и равна c {\displaystyle c} , однако скорость света вдоль траектории конечной длины может отличаться от c {\displaystyle c} в зависимости от того, как определено пространство и время[26].

Считается, что фундаментальные константы, такие как c {\displaystyle c} , имеют одинаковое значение во всем пространстве-времени, то есть они не зависят от места и не меняются со временем. Однако некоторые теории предполагают, что скорость света может изменяться со временем[27][28]. Пока нет убедительных доказательств таких изменений, но они остаются предметом исследований[29][30].

Кроме того, считается, что скорость света изотропна, то есть не зависит от направления его распространения. Наблюдения за излучением ядерных энергетических переходов как функции от ориентации ядер в магнитном поле (эксперимент Гугса — Древера), а также вращающихся оптических резонаторов (эксперимент Майкельсона — Морли и его новые вариации), наложили жёсткие ограничения на возможность двусторонней анизотропии[31][32].

В ряде естественных систем единиц скорость света является единицей измерения скорости[33]. В планковской системе единиц, также относящейся к естественным системам, служит в качестве единицы скорости и является одной из основных единиц системы.

Верхний предел скорости

Согласно специальной теории относительности, энергия объекта с массой покоя m {\displaystyle m} и скоростью v {\displaystyle v} равна γ m c 2 {\displaystyle \gamma mc^{2}} , где γ {\displaystyle \gamma }  — определенный выше фактор Лоренца. Когда v {\displaystyle v} равна нулю, γ {\displaystyle \gamma } равен единице, что приводит к известной формуле эквивалентности массы и энергии E = m c 2 {\displaystyle E=mc^{2}} . Поскольку фактор γ {\displaystyle \gamma } приближается к бесконечности с приближением v {\displaystyle v} к c {\displaystyle c} , ускорение массивного объекта до скорости света потребует бесконечной энергии. Скорость света — это верхний предел скорости для объектов с массой покоя. Это экспериментально установлено во многих тестах релятивистской энергии и импульса[34].

Событие A предшествует событию B в красной системе отсчёта (СО), одновременно с B в зелёной СО и происходит после B в синей СО

Вообще информация или энергия не могут передаваться в пространстве быстрее, чем со скоростью света. Один из аргументов в пользу этого следует из контринтуитивного заключения специальной теории относительности, известного как относительность одновременности. Если пространственное расстояние между двумя событиями А и В больше, чем промежуток времени между ними, умноженный на c {\displaystyle c} , то существуют такие системы отсчёта, в которых А предшествует B, и другие, в которых B предшествует А, а также такие, в которых события А и B одновременны. В результате, если объект двигался бы быстрее скорости света относительно некоторой инерциальной системы отсчёта, то в другой системе отсчёта он бы путешествовал назад во времени, и принцип причинности был бы нарушен[Прим. 8][36]. В такой системе отсчёта «следствие» можно было бы наблюдать раньше его «первопричины». Такое нарушение причинности никогда не наблюдалось[17]. Оно также может приводить к парадоксам, таким как тахионный антителефон[37].

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной[38]. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. Спустя полвека, в 1728 году, открытие аберрации позволило Дж. Брэдли подтвердить конечность скорости света и уточнить её оценку: полученное Брэдли значение составило 308 000 км/с[39][40].

Впервые измерения скорости света, основанные на определении времени прохождения светом точно измеренного расстояния в земных условиях, выполнил в 1849 году А. И. Л. Физо. В своих экспериментах Физо использовал разработанный им «метод прерываний», при этом расстояние, преодолеваемое светом, составляло 8,63 км. Полученное в результате выполненных измерений значение оказалось равным 313 300 км/с. В дальнейшем метод прерываний значительно усовершенствовали и использовали для измерений М. А. Корню (1876 г.), А. Ж. Перротен (1902 г.) и Э. Бергштранд[sv]. Измерения, выполненные Э. Бергштрандом в 1950 году, дали для скорости света значение 299 793,1 км/с, при этом точность измерений была доведена до 0,25 км/с[39].

Другой лабораторный метод («метод вращающегося зеркала»), идея которого была высказана в 1838 году Ф. Араго, в 1862 году осуществил Леон Фуко. Измеряя малые промежутки времени с помощью вращающегося с большой скоростью (512 об/с) зеркала, он получил для скорости света значение 298 000 км/с с погрешностью 500 км/с. Длина базы в экспериментах Фуко была сравнительно небольшой — двадцать метров[40][39][41][42][43]. В последующем за счёт совершенствования техники эксперимента, увеличения используемой базы и более точного определения её длины точность измерений с помощью метода вращающегося зеркала была существенно повышена. Так, С. Ньюком в 1891 году получил значение 299 810 км/с с погрешностью 50 км/с, а А. А. Майкельсону в 1926 году удалось понизить погрешность до 4 км/с и получить для скорости величину 299 796 км/с. В своих экспериментах Майкельсон использовал базу, равную 35 373,21 м[39].

Дальнейший прогресс был связан с появлением мазеров и лазеров, которые отличаются очень высокой стабильностью частоты излучения, что позволило определять скорость света одновременным измерением длины волны и частоты их излучения. В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с[44]. После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4·10-9[45], что соответствует абсолютной погрешности 1,2 м/с[46].

Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4·10-9[46]. Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[47].

Сверхсветовое движение

Основная статья: Сверхсветовое движение Основная статья: Тахион

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами[48], движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами[48].

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года показано, что в так называемом эффекте квантовой телепортации кажущееся взаимовлияние частиц распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, показала, что это кажущееся «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана — кажущаяся сверхсветовая скорость при туннельном эффекте[49]. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества[50].

В результате обработки данных эксперимента OPERA[51], набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино[52]. Сообщение об этом сопровождалось публикацией в архиве препринтов[53]. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино[54]. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили[55]. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля)[56].

В культуре

В фантастическом рассказе «Светопреставление» Александр Беляев описывает ситуацию, когда скорость света снижается до нескольких метров в секунду.

Комментарии

  1. От поверхности Солнца — от 8 мин. 8,3 сек. в перигелии до 8 мин. 25 сек. в афелии.
  2. Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
  3. В настоящее время наиболее точные методы измерения скорости света основаны на независимом определении значений длины волны λ {\displaystyle \lambda } и частоты ν {\displaystyle \nu } света или другого электромагнитного излучения и последующего расчёта в соответствии с равенством c = λ ν {\displaystyle c=\lambda \nu } .[10]
  4. См. например «Частица Oh-My-God».
  5. Аналогом может быть посылка наудачу двух заклеенных конвертов с белой и чёрной бумагой в разные места. Открытие одного конверта гарантирует, что во втором будет лежать второй лист — если первый чёрный, то второй белый, и наоборот. Эта «информация» может распространяться быстрее скорости света — ведь вскрыть второй конверт можно в любое время, и там всегда будет этот второй лист. При этом принципиальная разница с квантовым случаем состоит только в том, что в квантовом случае до «открытия конверта»-измерения состояние листа внутри принципиально неопределённо, как у кота Шрёдингера, и там может оказаться любой лист.
  6. Однако, частота света зависит от движения источника света относительно наблюдателя, благодаря эффекту Доплера
  7. В то время как движущиеся измеряемые объектов оказываются короче по линии относительного движения, они также выглядят повёрнутыми. Этот эффект, известный как вращение Террелла, связан с разницей во времени между пришедшими к наблюдателю сигналами от разных частей объекта.[21][22]
  8. Считается, что эффект Шарнхорста позволяет сигналам распространяться немногим выше c {\displaystyle c} , но особые условия, при которых эффект может возникать, мешают применить этот эффект для нарушения принципа причинности[35]

ru.wikipedia.org

/ Новая папка_2 / Определение скорости света (2)

ИСТОРИЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ СВЕТА

Скорость света в свободном пространстве (вакууме) – скорость распространения любых электромагнитных волн, в том числе и световых. Представляет собой предельную скорость распространения любых физических воздействий и инвариантна при переходе от одной системы отсчета к другой.

Скорость света в среде зависит от показателя преломления среды n, различного для разных частот излучения: с’() = c/n(). Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идет не о монохроматическом свете (для скорости света в вакууме эти величины совпадают. Экспериментально определяя с’, всегда измеряют групповую скорость света.

Впервые скорость света определил в 1676 году О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 году её установил Дж. Брадлей, исходя из своих наблюдений аберрации света звезд. В 1849 году А. И. Л. Физо первым измерил скорость света по времени прохождения светом точно известного расстояния (базы), так как показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину весьма близкую к скорости.

В опыте Физо пучок света от источника света S, отраженный полупрозрачным зеркалом 3, периодически прерывался вращающимся зубчатым диском 2, проходил базу 4-1 (около 8 км) и, отразившись от зеркала 1, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в

промежуток между зубцами свет можно было наблюдать через окуляр 4. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение c = 313300 км/с.

В 1862 году Ж. Б. Л. Фуко реализовал высказанную в 1838 году идею Д. Арго, применив вместо зубчатого диска быстровращающееся зеркало (512 оборотов в секунду). Отражаясь от зеркала пучок света направлялся на базу и по возвращении вновь попадал на то же зеркало, успевшее повернуться на некоторый малый угол. При базе всего 20 м Фуко нашёл, что скорость света равна 298000 500 км/с. Схемы и основные идеи методов Физо и Фуко были многократно использованы в последующих работах по определению скорости света.

Определение скорости света методом вращающегося зеркала (Метод Фуко): S– источник света; R – быстровращающееся зеркало; C – неподвижное вогнутое зеркало, центр которого совпадает с осью вращения R (поэтому свет, отраженный C, всегда попадает обратно на R); M – полупрозрачное зеркало; L– объектив; E – окуляр; RC – точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через объектив L, который собирает отраженный пучок в точке S’, а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливается, измеряя смещение SS’.

Полученное А. Майкельсоном в1926 году значение c = 299796 4 км/с было тогда самым точным и вошло в интернациональные таблицы физических величин.

Измерение скорости света в 19 веке сыграли большую роль в физике, дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 году сравнение скорости света одной и той же частоты в воздухе и воде показало, что скорость в воде u = c/n() в соответствии с предсказанием волновой теории. Была так же установлена связь оптики с теорией электромагнетизма: измеренная скорость света совпала со скоростью электромагнитных волн, вычисленной из отношения электромагнитных и электростатических единиц электрического заряда.

В современных измерениях скорости света используется модернизированный метод Физо с заменой зубчатого колеса на интерференционный или какой-либо другой модулятор света, полностью прерывающий или ослабляющий световой пучок. Приемником излучения служит фотоэлемент или фотоэлектрический умножитель. Применение лазера в качестве источника света, УЗ – модулятора со стабилизированной частотой и повышение точности измерения длины базы позволит снизить погрешности измерений и получить значение с = 299792,5 0,15 км/с. Помимо прямых измерения скорости света по времени прохождения известной базы, широко применяются косвенный методы, дающие большую точность.

Скорость света в вакууме принять считать 2999792458 1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретическом плане и для определения значений других физических величин, но и для практических целей. К ним, в частности. Относится определение расстояний во времени прохождения радио- или световых сигналов в радиолокации, оптической локации, светодальнометрии и др.

Майкельсон и скорость света

Не так уж часто приходится человеку семидесяти с лишним лет возвращаться к работе, которой он занимался в молодости, чтобы попытаться уточнить результаты и без того весьма точных и надежных исследований, потому что все считают, что никто другой не сможет это сделать лучше его. Такая завидная возможность представилась Майкельсону.

В 1923 году Джордж Эллери Хэл, директор обсерватории Маунт-Вильсон, предложил Майкельсону приехать в Пасадену и провести новое определение скорости света. Майкельсон принял его предложение с восторгом. Он давно уже ждал случая уточнить результаты своего знаменитого измерения 1882 года. Он быстро собрался и выехал в Калифорнию, где организовал свой штаб у подножия горы Маунт-Вильсон.

Подготовка опыта велась с большой тщательностью. Было выбрано место для двух установок. Одна из них помещалась на уже знакомой ему вершине горы Маунт-Вильсон, а другая – на вершине горы Сан-Антонио, известной под прозвищем «Старая плешь», на высоте 5800 м над уровнем моря и на расстоянии 35 км от горы Маунт-Вильсон. Береговой и геодезической службе Соединенных Штатов было поручено точно измерить расстояние между двумя отражающими плоскостями – вращающимся призматическим зеркалом на Маунт-Вильсон и неподвижным зеркалом на Сан-Антонио. Возможная ошибка при измерении расстояния составляла одну семимиллионную, или долю сантиметра на 35 км. Вращающаяся призма из никелированной стали с восемью зеркальными поверхностями, отполированными с точностью до одной миллионной, была изготовлена для опыта бруклинской компанией «Сперри джироскоп компани», президент которой, инженер-изобретатель Эльмер А. Сперри, был другом Майкельсона. Кроме того, было изготовлено еще несколько стеклянных и стальных призм. Восьмиугольный высокоскоростной ротор делал до 528 оборотов в секунду. Он приводился в движение воздушной струей, и его скорость, как и в прошлых опытах, регулировалась при помощи электрического камертона. (Камертон используется не только музыкантами для определения высоты звука. С его помощью можно очень точно определять короткие равные отрезки времени. Можно создать инструмент с нужной частотой, который под действием электрического тока будет вибрировать, подобно электрическому звонку.)

Сперри также предложил своему другу усовершенствованный прожектор, работающий от сильной дуги, построенный им незадолго до этого для военных целей. Престон Р. Бассет, инженер, возглавлявший работу над прожектором и позднее ставший президентом компании, разработал для этого эксперимента специальный механизм с дуговой лампой и сам отвез его летом 1924 года в Калифорнию. Для участия в проведении опыта из Чикаго приехал Фред Пирсон.

Новое измерение скорости света

Майкельсон, подобно капитану на мостике корабля, с увлечением руководил подготовкой операции, вникая в каждую мелочь. Были приняты все возможные меры предосторожности, чтобы исключить или свести к минимуму погрешности. Ученый мир с интересом наблюдал за приготовлениями. Наконец все было готово, и свет от дуговой лампы был направлен к зеркалу на Сан-Антонио и отразился на вращающуюся призму на горе Маунт-Вильсон (рис. 12). Измерения проводились каждую ясную ночь с десяти часов вечера до полуночи, и каждая серия наблюдений продолжалась несколько недель. Результаты измерений ежедневно поступали в штаб Майкельсона в Пасадене.

Рис. 12. Усовершенствования, внесенные Майкельсоном в свою установку.Принцип остался тот же (основным изменением было увеличение пути светового луча).

Начиная с 1924 года и до начала 1927 года было проведено пять независимых серий наблюдений. Средний результат равнялся 299 798 км в секунду.

Но Майкельсон все еще не был вполне удовлетворен. Он надеялся, что, если увеличить длину пути светового луча и перенести опыт в другую местность, ему удастся получить еще более точное определение. В своем сообщении об опыте на горе Сан-Антонио [33] он писал: «Успех измерений на расстоянии 22 миль, большинство из которых проводились не в самых благоприятных условиях (туман и дым от лесных пожаров), указывает на целесообразность проведения опыта на значительно большем расстоянии».

Для такого опыта он выбрал гору Сан-Хасинто, расположенную в 130 км от горы Маунт-Вильсон. Он даже провел предварительное испытание. Но свет от дуговой лампы на обратном пути так сильно ослаблялся дымом и туманом, что от этой идеи пришлось отказаться.

Майкельсон вернулся в Чикаго и в ноябре 1928 года поехал в Вашингтон на юбилейную научную конференцию в Национальном бюро стандартов. Она была созвана Оптическим обществом Америки в честь пятидесятилетия со времени опубликования первой работы Майкельсона (1878 год) о скорости света и в знак признания его огромных заслуг в области оптики. Эта конференция неофициально так и называлась – «майкельсоновская конференция», а сам Майкельсон, разумеется, был на ней почетным гостем.

Заключительная попытка

В следующем году у Майкельсона, которому было в то время семьдесят семь лет, произошло серьезное кровоизлияние в мозг. Он ушел в отставку из университета, много рисовал и ходил пешком, стараясь восстановить пошатнувшееся здоровье. Это было нелегко. Однако он не переставал мечтать о возвращении к исследованию скорости света; он надеялся, что, набравшись сил, проведет еще одно определение. Он вернулся к тому, с чего начинал более пятидесяти лет назад. Он лелеял мысль избавиться от помех в виде тумана, дыма и даже самой прозрачной атмосферы. Он хотел поставить опыт так, чтобы луч проходил через пустоту, если это будет возможно, через почти абсолютный вакуум.

И тут Майкельсон опять получил приглашение в Пасадену. «Хэл сказал, что Маунт-Вильсон и Калтеч – в моем распоряжении, – рассказывал он. – Искушение было слишком велико. Я поехал». Ему были предоставлены все необходимые средства и аппаратура. Фонд Рокфеллера выделил на проведение опыта 30 000 долларов, корпорация Карнеги – 27 500 долларов, а Чикагский университет – 10 000 долларов.

Местом для грандиозного опыта выбрали ранчо Ирвина неподалеку от города Санта Ана в Южной Калифорнии. Береговой и геодезической службе Соединенных Штатов опять было поручено измерение расстояния. Из листов рифленой стали были скатаны гигантские трубы. Состояли они из 18-метровых секций диаметром около метра, склепанных воедино. Получилась труба длиной более 1,5 км. Она обошлась в 50 тысяч долларов. В нее можно было проникнуть через четыре люка – два на концах и два в основной секции трубы. «Сперри джироскоп компани» опять изготовила вращающиеся стальные зеркала – с 8, 16 и 32 гранями. Кроме того, было изготовлено 32-гранное зеркало из первоклассного оптического стекла.

Трубу запаяли и специальными насосами несколько дней и ночей подряд откачивали из нее воздух, пока давление в трубе не опустилось до 0,5 мм рт. ст. (нормальное давление равно 760 мм рт. ст.). Источником света служила дуговая лампа. Многократно отражаясь, свет должен был пройти путь примерно 16 км. Впервые в истории измерение скорости света производилось почти в абсолютном вакууме.

Между тем здоровье Майкельсона оставляло желать лучшего. Он так и не смог оправиться настолько, чтобы собственноручно проводить измерения. Ими занимались Фрэнсис Г. Пиз и Фред Пирсон; они же и сводили воедино результаты. В течение 1930 года и начала 1931 года были проведены сотни наблюдений. Майкельсон руководил работами, лежа в постели. Один он никогда не справился бы с то и дело возникавшими проблемами, требующими немедленного разрешения. Каждый раз, когда что-то портилось в аппаратуре, приходилось пускать в трубу воздух, чтобы можно было туда проникнуть и исправить повреждение. А потом нужно было ждать сорок восемь часов, пока насосы снова откачают воздух. Тепловые волны искажали световое изображение, поэтому большую часть работы приходилось делать ночью, когда становилось прохладно.

В начале 1931 года, когда работа была еще далека от завершения, а Майкельсон как будто оправлялся от последствий болезни, в Пасадене проходила научная конференция, на которой присутствовал Эйнштейн и многие крупные ученые из разных стран. 15 января должен был состояться банкет в честь доктора Эйнштейна и его супруги. Майкельсон, конечно, тоже был приглашен. Чувствовал он себя тогда достаточно хорошо и был очень рад возможности присутствовать на этом торжественном собрании, которое состоялось в только что построенном великолепном здании Афиниума.

Эйнштейн произнес небольшую речь. Поблизости от него сидели крупнейшие ученые – Майкельсон, Милликен, Хэл и другие. «Я рад оказаться в обществе тех, – начал Эйнштейн, – которые в течение многих лет были мне верными товарищами в работе». Затем, повернувшись к Майкельсону, он продолжал: «Вы, уважаемый доктор Майкельсон, начали свои исследования, когда я был еще мальчишкой. Вы открыли физикам новые пути и своими замечательными экспериментами проложили дорогу для теории относительности. Вы вскрыли ошибочность эфирной теории света и стимулировали идеи Лоренца и Фитцджеральда, из которых развилась специальная теория относительности. Без вашей работы эта теория была бы и поныне лишь интересным предположением; она получила первое реальное подтверждение в ваших опытах».

Майкельсон был глубоко взволнован. Это была самая высокая похвала. Он встал, чтобы поблагодарить за столь щедрую оценку его заслуг. Майкельсон редко произносил речи, а когда ему случалось выступать, всегда говорил кратко и по существу. И на этот раз он не изменил себе. Он поблагодарил Эйнштейна от своего имени и от имени своего покойного сотрудника Эдуарда Морли, умершего восемь лет тому назад. Майкельсон никогда не забывал отдать должное своим сотрудникам и помощникам.

Это было последним публичным выступлением Майкельсона. Он попытался вернуться к работе, но 1 марта не смог встать с постели. Начался постепенный паралич, и он стал быстро слабеть. Между тем из Санта Ана поступали все новые данные. Собрав последние силы, Майкельсон медленно, но четко продиктовал Пизу вступление к статье, которая должна была подвести окончательный итог опытам. Эту статью следовало послать для опубликования в «Астрофизикал джорнал».

Состояние Майкельсона продолжало ухудшаться, но он отказывался признать, что серьезно болен. «Мое здоровье налаживается» – оптимистически писал он за сорок восемь часов до того, как впал в бессознательное состояние. Возле него находились жена, одна из дочерей и две сиделки. К ним присоединились Пиз и Пирсон. В двенадцать часов пятьдесят пять минут 9 мая 1931 года Майкельсон тихо скончался, не приходя в себя.

Пастор местной юнионистско-либеральной церкви отслужил у него в доме очень скромную и короткую службу. По просьбе вдовы Майкельсона сообщение о его смерти появилось в печати лишь после похорон. На похоронах присутствовали жена Майкельсона, Эдна, их три дочери – Мадлен, Дороти и Беатрис – и еще несколько родственников и ближайших друзей. Милликен, Хэл и Хэббл вынесли гроб к катафалку. Тело, согласно желанию Майкельсона, было кремировано, и прах развеян по ветру.

Ученые всего мира отмечали его заслуги перед наукой. Эйнштейн узнал о смерти Майкельсона в Англии, где он читал курс лекций в Оксфорде. «Доктор Майкельсон был одним из величайших художников в мире научного эксперимента» – сказал он.

Трое ближайших сотрудников Майкельсона по Чикагскому университету, – Форест Р. Моултон, Генри Дж. Гейл и Гарвей Б. Лемон, знавшие его в течение четверти века, писали в некрологе:

«Его жизнь была великолепным примером целеустремленности, неподвластной превратностям судьбы. Казалось, даже, силы любви, ненависти, ревности, зависти, тщеславия почти не задевали его. Поглощенный научными исследованиями, он в общем довольно безразлично относился к людям в целом, но тем не менее у него были преданные друзья, дружбу которых он бережно хранил... Основным содержанием и целью его жизни были научные занятия, эстетическое наслаждение, получаемое от работы... Ему была чужда спешка, суета. Его не бросало в жар при мысли, что для науки или всего человечества наступил решительный момент. Он не трепетал, стоя на пороге великого открытия...

Он был мягок и спокоен и лишен всякой аффектации, как море в солнечный день – безмятежное, необозримое, неизмеримое... Такой характер можно чувствовать, но нельзя анализировать. Майкельсон никому не открывал своей души, но все понимали, что в глубине ее таится многое, недоступное взорам. Очень мало людей знали его близко».

После смерти Майкельсона работы по измерению скорости света в вакуумной трубе длиной более 1,5 км продолжались еще почти два года. В 1933 году во время землетрясения в Лонг Бич установка оказалась разрушенной, но к этому времени все наблюдения были уже закончены. Всего было сделано 2885 определений. Средняя скорость света в вакууме оказалась равной 299 774 км в секунду. Эта цифра была на 24 км меньше цифры, найденной во время опытов на вершинах двух гор. Международный геофизический и геодезический союз и Международный научный союз по вопросам радио приняли значение скорости света, равное 299 792,5 км в секунду*. Эта цифра лежит в пределах экспериментальной ошибки определения Майкельсона.

Заглавие статьи, содержавшей сообщение о последнем опыте Майкельсона, перекликалось с заглавием его первой работы, опубликованной более чем за полвека до этого, когда он еще был лейтенантом Майкельсоном. Она называлась «О методе измерения скорости света». Последняя работа, озаглавленная «Измерение скорости света в частичном вакууме» [35], явилась завершением великого вклада Майкельсона в науку.

Продолжение поисков

В научных исследованиях не бывает последнего слова или окончательного решения. Если бы Майкельсон пришел сегодня в крупнейшие научные лаборатории мира, он обнаружил бы, что исследователи все еще бьются над теми же проблемами, которые пытались разрешить он и другие ученые его времени. Казавшиеся твердо установившимися научные идеи непрестанно ниспровергаются, заменяются, расширяются или дополняются. Так произошло с законами Ньютона, видоизмененными Эйнштейном. А как обстоит дело со скоростью света – этой постоянной, которую Майкельсон, казалось бы, изловил раз и навсегда? Относительно нее тоже существуют сомнения. Ученые снова и снова подступались к ней с новыми приборами и новыми методами. В 1939 году две группы исследователей – одна в Гарвардском университете, а другая в Германии, – использовав так называемый электронный световой затвор (ячейка Керра), получили несколько различные результаты: 299 798 км/сек в США и 299 799 км/сек в Германии. Два года спустя ученые национального бюро стандартов получили цифру 299 795 км/сек. В 1951 году капитан Береговой и геодезической службы США Карл И. Аслаксон при испытании радарной системы получил величину, равную 299 805 км/сек. Три года спустя группа английских ученых повторила его результат.

Было высказано предположение, что скорость света все же не является постоянной величиной. Некоторые ученые утверждают, что она изменилась, указывая на разницу в результатах измерений, проделанных до второй мировой войны и после нее с промежутком в десять лет. Она составляет приблизительно 16 км в секунду. Профессор Техасского технологического колледжа Дж.Х. Раш считает, что «к этому нельзя относиться с излишней легкостью и объяснять неизбежными техническими погрешностями». Раш считает, что «Новые измерения могут привести к новому открытию». И поиски продолжаются*.

А как обстоит дело с вопросом об эфире? В 1899 году Майкельсон коснулся этой проблемы в своих лоуэлловских лекциях. «Предположим, – сказал он, – что сжатие эфира соответствует электрическому заряду, смещение эфира – электрическому току, эфирные вихри – атомам; если мы продолжим эти предположения, то придем к выводу, который может явиться одним из величайших обобщений современной науки, – что все явления физической Вселенной суть лишь различные выражения многообразных видов движения одного всепроникающего вещества – эфира. Мне представляется, что недалек тот день, когда линии многих, казалось бы, отдаленных областей мысли, наконец, сойдутся на одной общей плоскости. Тогда и природа атома, и характер химической связи атомов, и взаимодействие между ними, и непрерывный эфир, заявляющий о себе через свет и электричество, и структура молекулы, и объяснение сцепления, упругости и притяжения – все это найдет свое место в единой и последовательной системе научного знания».

С тех пор прошло более шестидесяти лет, но пророчество Майкельсона все еще не осуществилось. Свет и другие виды электромагнитного излучения по-прежнему не нуждаются в какой-либо проводящей среде. Идея эфира окончательно отвергнута в значительной степени благодаря гению Майкельсона.

StudFiles.ru

3.Способы определения скорости света.

Существует несколько способов определения скорости света:

  1. Астрономический

  2. Лабораторные метод.

1) Впервые скорость света измерил датский ученый Ремер в 1676г используя астрономический метод. Он засекал время которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты.

Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного по астрономическим понятиям дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Так была доказана теория о конечной скорости света, и была примерно подсчитана его скорость она примерно составляла 299800 км/с.

2) Лабораторный метод позволяет определить скорость света на небольшом расстоянии и большой точностью. Первые лабораторные опыты провёл Фуко, а затем и Физо.

Ученые и их эксперименты

Впервые скорость света определил в 1676 году О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 году её установил Дж. Брадлей, исходя из своих наблюдений аберрации света звезд. В 1849 году А. И. Л. Физо первым измерил скорость света по времени прохождения светом точно известного расстояния (базы), так как показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину весьма близкую к скорости.

Опыт Физо

Опыт Физо — опыт по определению скорости света в движущихся средах (телах), осуществлённый в 1851 Луи Физо. Опыт демонстрирует эффект релятивистского сложения скоростей. С именем Физо связан также первый эксперимент по лабораторному определению скорости света.

В опыте Физо пучок света от источника света S, отраженный полупрозрачным зеркалом 3, периодически прерывался вращающимся зубчатым диском 2, проходил базу 4-1 (около 8 км) и, отразившись от зеркала 1, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр 4. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение c = 313300 км/с.

Опыт Фуко

В 1862 году Ж. Б. Л. Фуко реализовал высказанную в 1838 году идею Д. Арго, применив вместо зубчатого диска быстровращающееся зеркало (512 оборотов в секунду). Отражаясь от зеркала пучок света направлялся на базу и по возвращении вновь попадал на то же зеркало, успевшее повернуться на некоторый малый угол. При базе всего 20 м Фуко нашёл, что скорость света равна 298000 500 км/с. Схемы и основные идеи методов Физо и Фуко были многократно использованы в последующих работах по определению скорости света.

Определение скорости света методом вращающегося зеркала (Метод Фуко): S– источник света; R – быстровращающееся зеркало; C – неподвижное вогнутое зеркало, центр которого совпадает с осью вращения R (поэтому свет, отраженный C, всегда попадает обратно на R); M – полупрозрачное зеркало; L– объектив; E – окуляр; RC – точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через объектив L, который собирает отраженный пучок в точке S’, а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливается, измеряя смещение SS’.

Полученное А. Майкельсоном в1926 году значение c = 299796 4 км/с было тогда самым точным и вошло в интернациональные таблицы физических величин. свет скорость оптический волокно

Измерение скорости света в 19 веке сыграли большую роль в физике, дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 году сравнение скорости света одной и той же частоты в воздухе и воде показало, что скорость в воде u = c/n(n) в соответствии с предсказанием волновой теории. Была так же установлена связь оптики с теорией электромагнетизма: измеренная скорость света совпала со скоростью электромагнитных волн, вычисленной из отношения электромагнитных и электростатических единиц электрического заряда.

В современных измерениях скорости света используется модернизированный метод Физо с заменой зубчатого колеса на интерференционный или какой-либо другой модулятор света, полностью прерывающий или ослабляющий световой пучок. Приемником излучения служит фотоэлемент или фотоэлектрический умножитель. Применение лазера в качестве источника света, УЗ – модулятора со стабилизированной частотой и повышение точности измерения длины базы позволит снизить погрешности измерений и получить значение с = 299792,5 0,15 км/с. Помимо прямых измерения скорости света по времени прохождения известной базы, широко применяются косвенный методы, дающие большую точность.

Скорость света в вакууме принять считать 2999792458 1,2 м/с.

Как можно более точное измерение величины «с» чрезвычайно важно не только в общетеоретическом плане и для определения значений других физических величин, но и для практических целей. К ним, в частности. Относится определение расстояний во времени прохождения радио или световых сигналов в радиолокации, оптической локации, светодальнометрии и в других подобных измерениях.

Светодальномерия

Светодальномер — геодезический прибор, позволяющий с высокой точностью (до нескольких миллиметров) измерять расстояния в десятки (иногда в сотни) километров. Так, например, светодальномером измерено расстояние от Земли до Луны с точностью до нескольких сантиметров.

Лазерный дальномер — прибор для измерения расстояний с применением лазерного луча.

StudFiles.ru

СКОРОСТЬ СВЕТА это:

СКОРОСТЬ СВЕТА СКОРОСТЬ СВЕТА
в свободном пространстве (вакууме) с, скорость распространения любых электромагнитных волн (в т. ч. световых); одна из фундам. физических постоянных; представляет собой предельную скорость распространения любых физ. воздействий (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ) и инвариантна при переходе от одной системы отсчёта к другим. Величина с связывает массу и полную энергию материального тела; через неё выражаются преобразования координат, скоростей и времени при изменении системы отсчёта (Лоренца преобразования); она входит во мн. др. соотношения. С. с. в с р е д е с' зависит от показателя преломления среды n, различного для разных частот n излучения (Дисперсия света): с'(n) =c/n(n). Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматическом сеете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с', всегда измеряют групповую С. с. либо т. н. скорость сигнала, или скорость передачи энергии, только в нек-рых спец. случаях не равную групповой. Впервые С. с. определил в 1676 дат. астроном О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил англ. астроном Дж. Брадлей, исходя из своих наблюдений аберрации света звёзд. На Земле С. с. первым измерил — по времени прохождения светом точно известного расстояния (базы) — в 1849 франц. физик А. И. Л. Физо. (Показатель преломления воздуха очень мало отличается от единицы, и наземные измерения дают величину, весьма близкую к с.) В опыте Физо пучок света от источника S, отражённый полупрозрачным зеркалом N, периодически прерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) и, отразившись от зеркала М, возвращался к диску (рис. 1). Падая при этом на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е. По известным скоростям вращения диска определялось время прохождения светом базы.СКОРОСТЬ СВЕТА1 Рис. 1. Определение скорости света методом Физо. Физо получил значение с=313300 км/с. В 1862 франц. физик Ж. Б. Л. Фуко реализовал высказанную в 1838 франц. учёным Д. Араго идею, применив вместо зубчатого диска быстро вращающееся (512 об/с) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на нек-рый малый угол (рис. 2). При базе всего в 20м Фуко нашёл, что С. с. равна 298000± ±500 км/с.СКОРОСТЬ СВЕТА2 Рис. 2. Определение скорости света методом вращающегося зеркала (методом Фуко). S — источник света; R — быстровращаюшееся зеркало; С — неподвижное вогнутое зеркало, центр кривизны к-рого совпадает с осью вращения R (поэтому свет, отражённый С, всегда попадает обратно на R); М — полупрозрачное зеркало; L — объектив; Е — окуляр; RС — точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через L. Объектив L собирает отражённый пучок в точке S', а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливают, измеряя смещение SS'. Схемы и осн. идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное амер. физиком А. Майкельсоном (см. МАЙКЕЛЬСОНА ОПЫТ) в 1926 значение c=299796±4 км/с было тогда самым точным и вошло в интернац. таблицы физ. величин. Измерения С. с. в 19 в. сыграли большую роль в физике, дополнительно подтвердив волн. теорию света (выполненное Фуко в 1850 сравнение С. с. одной и той же частоты v в воздухе и воде показало, что скорость в воде и=c/n(n), как и предсказывала волновая теория), а также установили связь оптики с теорией электромагнетизма — измеренная С. с. совпала со скоростью эл.-магн. волн, вычисленной из отношения эл.-магн. и электростатич. единиц электрич. заряда (опыты нем. физиков В. Вебера и Р. Кольрауша в 1856 и последующие более точные измерения англ. физика Дж. К. Максвелла). Это совпадение явилось одним из отправных пунктов при создании Максвеллом эл.-магн. теории света в 1864—73. В совр. измерениях С. с. используется модернизир. метод Физо (модуляц. метод) с заменой зубчатого колеса на электрооптич., дифракц., интерференционный или к.-л. иной модулятор света, полностью прерывающий или ослабляющий световой пучок (см. МОДУЛЯЦИЯ СВЕТА). Приёмником излучения служит фотоэлемент или фотоэлектронный умножитель. Применение лазера в кач-ве источника света, УЗ модулятора со стабилизир. частотой и повышение точности измерения длины базы позволили снизить погрешности измерений и получить значение с=299792,5±0,15 км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, широко применяются т. н. косвенные методы, дающие большую точность. Так, с помощью микроволнового вакуумиров. резонатора (англ. физик К. Фрум, 1958) при длине волны излучения l=4 см получено значение с=299792,5±0,1 км/с. С ещё меньшей погрешностью определяется С. с. как частное от деления независимо найденных l и n ат. или мол. спектральных линий. Амер. учёный К. Ивенсон и его сотрудники в 1972 по цезиевому стандарту частоты (см. КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ) нашли с точностью до 11-го знака частоту излучения СН4-лазера, а по криптоновому стандарту частоты — его длину волны (ок. 3,39 мкм) и получили с=299792456,2±0,2 м/с. Однако эти результаты требуют дальнейшего подтверждения. Решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники — КОДАТА (1973) С. с. в вакууме принято считать равной 299792458±1,2 м/с. Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретич. плане и для определения значений др. физ. величин, но и для практич. целей. К ним, в частности, относится определение расстояний по времени прохождения радио- или световых сигналов в радиолокации, оптической локации, светодальнометрии, в системах слежения за ИСЗ и т. д.

Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

СКОРОСТЬ СВЕТА

в свободном пространстве (вакууме) - скоростьраспространения любых электромагнитных волн (в т. ч. световых);одна из фундам. физ. постоянных; представляет собой предельную скоростьраспространения любых физ. воздействий (см. Относительности теория )и инвариантна при переходе от одной системы отсчёта к другой.

С. с. в среде с' зависит от показателя преломления среды n, различногодля разных частот v излучения ( Дисперсия света):8042-38.jpg. Эта зависимость приводит к отличию групповой скорости от фазовойскорости света в среде, если речь идёт не о монохроматич. свете (дляС. с. в вакууме эти две величины совпадают). Экспериментально определяя с', всегда измеряют групповую С. с. либо т. н. с к о р о с т ь сигнала, Впервые С. с. определил в 1676 О. К. Рёмер (О. Ch. Roemer) по изменениюпромежутков времени между затмениями спутников Юпитера. В 1728 её установилДж. Брадлей (J. Bradley), исходя из своих наблюдений аберрации света звёзд. . (рис. 1), отражённый полупрозрачным зеркалом N, периодическипрерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) н, отразившись от зеркала М, возвращался к диску. Попадаяна зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцамисвет можно было наблюдать через окуляр Е. По известным скоростямвращения диска определялось время прохождения светом базы. Физо получилзначение с = 313300 км/с В 1862 Ж . Б. Л. Фуко (J. В. L. Foucault)реализовал высказанную в 1838 идею Д. Араго (D. Arago), применив вместозубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, 500 км/с. Схемы и осн. идеи опытов Физо и Фуко были многократно использованыв последующих работах по определению С. с. Полученное А. Майкельсоном (A.Michelson) (см. Майкельсона опыт )в 1926 значение 8042-42.jpgкм/с было тогда самым точным и вошло в интернац. таблицы физ. величин.
8042-39.jpg

Рис. 1. Определение скорости света методом Физо.

8042-40.jpg

Рис. 2. Определение скорости света методом вращающегося зеркала (методомФуко): S - источник света; R - быстровращающееся зеркало; С - неподвижноевогнутое зеркало, центр которого совпадает с осью вращения Я (поэтому свет,

Измерения С. с. в 19 в. сыграли большую роль в физике, дополнительноподтвердив волновую теорию света. Выполненное Фуко в 1850 сравнение С. в соответствии с предсказанием волновой теории. Была также установленасвязь оптики с теорией электромагнетизма: измеренная С. с. совпала со скоростьюэл.-магн. волн, вычисленной из отношения эл.-магн. и эл.-статич. единицэлектрич. заряда [опыты В. Вебера (W. Weber) и Ф. Кольрауша (F. Kohlrausch)в 1856 и последующие более точные измерения Дж. К. Максвелла (J. С. Maxwell)].Это совпадение явилось одним из отправных пунктов при создании Максвелломв 1864-73 эл.-магн. теории света.

В совр. измерениях С. с. используется модернизиров. метод Физо (модуляц. Модуляция света). Приёмником излучения служит фотоэлементпли фотоэлектронный умножитель. Применение лазера в качествеисточника света, УЗ-модулятора со стабилизиров. частотой и повышение точностиизмерения длины базы позволили снизить погрешности измерений и получитьзначение 8042-44.jpgкм/с. Помимо прямых измерений С. с. по времени прохождения известной базы, = 4 см получено значение 8042-46.jpgкм/с. С ещё меньшей погрешностью определяется С. с. как частное от делениянезависимо найденных 8042-47.jpgи v атомарных или молекулярных спектральных линий. К. Ивенсон (К.Evenson) и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовыестандарты частоты )нашли с точностью до 11-го знака частоту излученияСН 4 -лазера, а по криптоновому стандарту частоты - его длинуволны (ок. 3,39 мкм) и получили 8042-48.jpg± 0,8 м/с. Решением Генеральной ассамблеи Международного комитета по численнымданным для науки и техники - КОДАТА (1973), проанализировавшей все имеющиесяданные, их достоверность и погрешность, С. с. в вакууме принято считатьравной 299792458 ±1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не тольков общетеоретич. плане и для определения значении др. физ. величин, но идля практич. целей. К ним, в частности, относится определение расстоянийпо времени прохождения радио-или световых сигналов в радиолокации, оптическойлокации, светодальнометрии, в системах слежения ИСЗ и др.

Лит.: Вафиади В. Г., Попов Ю. В., Скорость света и ее значениев науке и технике, Минск, 1970; Тейлор В., Паркер В., Лангенберг Д., Фундаментальныеконстанты и квантовая электродинамика, пер. с англ., М., 1972. А. М.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.


.

dic.academic.ru

Скорость света

Скорость света очень велика, поэтому все попытки определить ее в земных условиях терпели неудачу. Ведь любое расстояние на земле в пределах прямой видимости свет пробегает за столь малый промежуток времени, который люди не могли измерить. Первое успешное измерение скорости света провел датский астроном Олаф Рёмер в 1676 году. Он использовал расстояния космического масштаба.

Наблюдая с Земли за процессом выхода из тени спутника Юпитера, он вычислил период обращения его вокруг Юпитера. Рассчитав момент времени, когда это событие произойдет спустя полгода, он обнаружил, что спутник «опоздал» выйти из тени на 1320 секунд по сравнению с расчетным временем. На рисунке видно, почему это произошло. Расчеты были сделаны при условии постоянства расстояния между Землей и Юпитером. Но за полгода оно возросло на 299106 тыс. км. (диаметр земной орбиты). Именно это дополнительное расстояние пришлось пробежать свету, поэтому он и «опоздал». Поделив путь на время, Рёмер получил скорость света с=215 тыс. км/c. Хотя истинное значение скорости света в полтора раза больше, но это измерение стало первым достоверным ее значением, показав ее большую величину.

Джеймс Брэдли (1727) использовал для определения скорости света явление аберрации (отклонения) света звезд. Представим, что мы направляем телескоп с неподвижной Земли на звезду в зените. Телескоп нужно установить вертикально. Теперь будем считать, что Земля движется по горизонтали со скоростью V. Видно, что для того, чтобы свет прошел через трубу телескопа, он должен быть наклонен от вертикального направления на малый угол α, Используя прямоугольный треугольник, можно получить формулу для искомого угла

, здесь V- скорость земли в перпендикулярном направлении c – скорость света.

Поскольку вектор скорости Земли описывает за год окружность, то направление телескопа на звезду так же опишет окружность, и на видимой небесной сфере за год звезда опишет маленький кружок. Угловой размер этого кружка 2α=40.9” – это и есть угол аберрации, соответствующая ему скорость c=303000 км/с.

В земных условиях скорость света была впервые измерена лишь сто лет спустя Ипполитом Физо(1849). Схема прибора следующая.

Источник света (на рис. звездочка) формирует пучок света, который с помощью полупрозрачного зеркала фокусируется на промежутке между зубцами колесика, после прохождения которого, направляется на отражающее зеркало, расположенное на расстоянии 8633 м, затем возвращается назад и попадает в глаз наблюдателю. Двукратное прохождение прямого участка требует всего 0.00006 с. Для измерения столь малого промежутка времени был придуман очень изящный способ. Колесико приводилось в быстрое вращение, и при некоторой скорости вращения свет переставал попадать к наблюдателю. Это означало, что за время прохождения светом пути, на место промежутка между зубцами встает следующий зубец. Увеличив скорость, добиваемся прохождения света (он проходит через следующий промежуток). Колесо содержало 720 зубцов (и столько же промежутков), а первое «просветление» достигалось при частоте 12.67 оборотов/с. Время прохождения светом всего пути составило . Скорость света составила с=2*8633*18245=315000 км/с.

Леон Фуко (1862) смог довести расстояние, преодолеваемое светом до нескольких метров, что позволило заполнить световой путь жидкостью и изучать скорость света в прозрачном веществе. Она оказалась меньше, например, в воде она составила 75% от скорости в воздухе. Максимального значения скорость света достигает в вакууме. с=299792458 м/с. Это точное значение, поскольку единицу измерения длины (метр) специально «подвели» под это значение. То есть, такое определение скорости света фактически определяет эталон длины. Можно было бы выбрать значение скорости света равное ровно 300000000 м/с, но тогда новый эталон метра не совпал бы с исторически принятым. В воздухе скорость света меньше, но отличие весьма мало.

studopedia.ru

Измерение скорости света Рёмером

Олаф Рёмер (1644—1710), портрет выполнен спустя несколько лет после открытия, во время его политической карьеры в Дании.

Измере́ние ско́рости све́та Рёмером — обнаруженное в 1676 году доказательство конечности скорости света, то есть того, что свет не распространяется с бесконечной скоростью, как считалось ранее. Открытие этого факта обычно приписывается датскому астроному Оле (Олафу) Рёмеру (1644—1710), который тогда работал в Королевской обсерватории Парижа.

Предпосылки открытия

Для навигации в море, практически важной для мореплавания, необходимо определение географических координат судна. Широта легко находится по высоте Полярной звезды над горизонтом (точнее, высоте Северного полюса Мира), с долготой дело обстояло сложнее. Несмотря на то, что принцип определения долготы по моментам затмений спутников Юпитера был предложен Галилеем в 1612 г., после открытия им этих спутников в 1610 г.[1], этот метод неудобен для наблюдения затмений спутников Юпитера на судне в открытом море из-за качки, так как для наблюдения затмений требовался телескоп со значительным увеличением, при котором изображение Юпитера и его спутников «металось» в поле зрения телескопа. Актуальностью задачи определения долготы объясняется учреждением в 1714 году британским парламентом огромной по тем временам премии за разработку метода определения долготы — £10 000 при погрешности в 60 морских миль, £15 000 (40 миль) и £20 000 (30 миль). После учреждения этой премии многие учёные и просто энтузиасты взялись за решение этой проблемы.

В сухопутных экспедициях или для определения долготы на вновь открытых землях морскими экспедициями по затмениям спутников Юпитера этот метод долгое время оставался единственным способом надёжного определения долготы до изобретения в 1730 г. и доведения до практического применения в 1735 г. точного морского хронометра. (Подробнее см. Проблема определения долготы).

Для определения географической долготы необходимо знание времени на нулевом меридиане и местного времени в определяемом месте. Местное время легко находится по высоте светил над горизонтом (например, наибольшая высота Солнца над горизонтом достигается в момент астрономического полудня, также могут быть составлены таблицы для определения местного времени в любой момент суток по высоте над горизонтом других светил, например, Сириуса). По разности времён суток в определяемом месте и Гринвичской обсерватории сразу находится долгота. (Подробнее см. Астрономическая навигация).

Таким образом, проблема сводится к определению разности между местным временем и временем нулевого меридиана в текущий момент.

В то время ещё не изобрели точные часы (хронометры), пригодные для определения времени на судах, так как наиболее точные в то время часы — маятниковые (изобретённые Гюйгенсом в 1657 г.) непригодны для этой цели из-за качки судна в море. Поэтому, время нулевого меридиана можно было определить только по наблюдениям астрономических явлений.

Долгое время такими наблюдаемыми явлениями были только лунные затмения, но, так как момент лунного затмения трудно определить с достаточной точностью (длится более часа и тень Земли на поверхности Луны размыта из-за рефракции в атмосфере Земли), и это довольно редкое явление, астрономы искали более удобные «небесные часы».

После открытия Галилеем спутников Юпитера он предложил в работе 1612 г. применить для определения долготы эти «небесные часы» — моменты затмений спутников Юпитера (захождения спутников в солнечную тень планеты). Для этой цели удобно наблюдение самого близкого к планете и имеющего максимальную орбитальную скорость из галилеевых спутников спутника Юпитера Ио, так как имеет орбитальный период ~42,5 часов, (то есть, затмения и выходы из затмений происходят через каждые сутки и 19 часов.). При орбитальной скорости Ио ~17 км/с и диаметре ~3600 км фаза затмения и выхода из затмения длится ~200 c, таким образом, при ошибке определения времени нулевого меридиана в 100 с по затмениям Ио можно было рассчитывать на максимальную погрешность определения места по долготе на широте экватора в ~50 км (~30 миль). В более высоких широтах ошибка определения места по расстоянию соответственно ниже и уменьшается как косинус широты.

Для практического применения этого метода определения долготы необходимо прогнозировать моменты затмений, то есть составить таблицы моментов будущих затмений спутников Юпитера, составленные для местного времени нулевого меридиана.

Метод Рёмера

Рисунок из статьи Рёмера 1676 года. Рёмер наблюдал моменты затмений спутника Юпитера Ио при положениях Земли на орбите в точках F, G, L, K.

Проводя наблюдения затмений, Рёмер заметил, что моменты затмений сдвигаются во времени в зависимости от положения Земли на орбите, а именно, когда Земля находится ближе к Юпитеру, моменты затмений наступают ранее усреднённых на больших интервалах времени средних значений, а когда Земля находится дальше от Юпитера — отстают.

Для объяснения этих колебаний моментов затмений Рёмер предположил, что скорость света конечна, и рассчитал её по результатам своих наблюдений. По его вычислениям, скорость света оказалась равна 220 000 км/с, что на 26 % ниже современного значения (c ≈ 300 000 км/с). Эта существенная ошибка объясняется тем, что в то время были неизвестны с достаточной точностью значение астрономической единицы и линейные элементы орбиты Юпитера.

Ссылки

  • Short, uncluttered explanation by Ethan Siegel
  • Visualize Solar System at a given Epoch
  • The history of a velocity
  • Rømer and the Doppler principle
  • Proceeding of a Rømer Experiment for Schools from EAAE Summer Schools
  • "Démonstration touchant le mouvement de la lumière trouvé par M. Römer de l’Académie Royale des Sciences", Journal des Sçavans: 233–36, 1676,  
  • "A demonstration concerning the motion of light, communicated from Paris, in the Journal des Scavans, and here made English", Philosophical Transactions of the Royal Society of London Т. 12: 893–94, 1677,  
  • Catalogus Stellarum Australium

ru.wikipedia.org

Чему равна скорость света?

У м к а

В 1975 году было произведено величайшее открытие, а именно измерена скорость света, которая составляет:

Для более наглядного понимания предлагаю взглянуть на рисунок.

Солнечному свету требуется около 8 минут 19 секунд, чтобы достигнуть Земли.

В ниже представленном видео-ролике постарались такую величину, как скорость света объяснить более доступным языком, чтобы представить насколько это быстро в человеческом понимании и недосягаемо для воспроизводства.

Туткактут

Сейчас, в наше время, имея под рукой компьютер и интернет, не проблема узнать какая скорость света, так как это открытая информация и это значение следующие:

299 792 458 метров в секунду.

Узнав такие данные очевидно можно быть немного шокированным, ведь действительно это огромная скорость, которой пока нет равных, да и вряд ли удастся ее превзойти.

Вот тут еще занимательная табличка и интересными данными:

Музыка ветра

  • Чему равна скорость света в вакууме?

Считается, что скорость света равна (наиболее точное измерение) 299 792 458 м/с = 299 792, 458 км/с. Считается за одну планковскую единицу. Часто эти цифры округляют (например, в школьных задачах по физике) до 300 000 000 м/с = 300 000 км/с.

Очень интересная статья (точнее, глава из учебника по физике за 9-й класс), рассказывающая о том, как датский учёный О. Рёмер в 1676 году впервые измерил примерную скорость света. И вот ещё одна статья.

  • Чему равна скорость распространения света в различных прозрачных средах?

Скорость света в различных прозрачных средах всегда меньше, чем скорость света в вакууме, так как чтобы получить скорость света в какой-либо прозрачной среде, мы делим скорость света в вакууме на коэффициент преломления данной среды. Коэффициент преломления вакуума равен единице.

Чтобы получить v (скорость света в конкретной среде), нужно разделить c (скорость света в вакууме) на n. Поэтому распространения света в любой прозрачной среде определяется по формуле:

v = c : n

  • Чему равна скорость света в воздухе?

Скорость распространения света в воздухе равна, мы уже разобрались, скорости света в вакууме, которую разделили на коэффициент (показатель) преломления воздуха, который обозначается как n. А уже этот самый коэффициент зависит и от длины волны, и от давления, и от температуры. То есть при различных n скороость света в воздухе будет разной, но определённо меньше скорости света в вакууме.

  • Чему равна скорость света в стекле?

Всё та же формула, как Вы поняли, а n будет равно от 1,47 до 2,04. Если не уточняется коэффициент преломления стекла, как вариант - взять среднее значение (n = 1,75).

  • Чему равна скороть света в воде?

У воды коэффициент преломления (n) равен 1,33. Тогда:

v = c : n = 299 792 458 м/с : 1,33 ~ 225 407 863 м/с - скорость света в воде.

  • Ко всему вышесказанному хотелось бы добавить, что если Вы хотите более наглядно понять, что же такое скорость света, то можно отметить, что свет от Луны до Земли проходит расстояние за 1,255 с, а солнечный свет проходит расстояние в 150 млн км (!) за 8 мин 19 сек.

  • Со скоростью света распространяется не только свет, но и прочие виды электромагнитного излучения (радиоволны (от сверхдлинных), инфракрасное, ультрафиолетовое, терагерцовое и рентгеновское излучение, также - гамма-излучение).

Чему равна скорость света?

Тартар ассия

Скорость света равна нулю!

Ну, начнем с того, что свет во всех своих спектрах невидим.

Мы не видим свет!

Мы видим только предметы, способные отразить этот свет.

Пример: Мы смотрим на звезду именно в темном небе (что важно) и, если вдруг между нашим глазом и направлением на звезду появиться, например облачко, то оно и отразит этот невидимый свет.

Это первое.

Второе.

Свет есть стоячая волна.

Свет никуда не летит. Свет несет светящийся предмет, отражающий этот свет, например факельщик с факелом, а мы его видим, как отражение от факела, на котором и происходят реакции.

Факел не источник света!

Факел только отражает свет, который появился на поверхности факела из-за химической реакции.

Так же и с нитью накаливания.

Пример:

Берем фонарик и снимаем с него отражатель и в темной комнате одна лишь лампочка осветит равномерно (что важно), лишь достаточно небольшое пространство. И, сколько бы времени мы не затратили на ожидание, то все равно свет никуда более не долетит. Свет будет стоять на одном месте вечно, или пока нить накаливания, нагреваясь, будет способна отражать свет (светиться)! Но, если мы поставим отражатель, то увидим, что свет локализовался в пучок и смог без всякого увеличения мощности свечения проникнуть дальше, если мы, без всякого увеличения мощности, изменим фокус, то свет проникнет еще дальше, но локализуется еще более в ограниченном луче.

Но, даже при большом удалении и даже в стороне от направления луча, мы, находясь в полной темноте, все равно будем видеть световое пятно. Мы закрываем глаза и ничего не видим, открываем и сразу видим светлое пятно от фонарика на темном фоне.

О какой скорости света может идти речь?

Вывод:

У света нет скорости. Свет есть стоячая волна. У стоячей световой волны есть способность при неизменном своем объеме, обусловленном мощностью химической реакции, изменять свою конфигурацию и стоячая волна способна быть видима, лишь при освещении предметов, которые и отражают стоячую волну, а мы видим ее, как светлое пятно на темном фоне и не более того.

Bk.Ru

Поскольку Вы не уточнили, в каких средах Вас интересует скорость света, то придется давать развернутый ответ. О скорости света в вакууме точно поведал(а) Anasteisha Ana. Но скорость света в различных средах не постоянна и обязательно меньше чем в вакууме. Более того в одной и той же среде скорость света разной длины волны различна. И это свойство света очень широко используется, точнее сказать учитывается в оптике. В оптике введено понятие показателя преломления оптической среды. Этот параметр показывает во сколько раз скорость света некоторой длины волны в данной среде меньше скорости света в вакууме. Так, например, в оптическом стекле ЛК8 скорость распространения красного света с длиной волны 706,52 нанометра в 1,46751 раза меньше чем в вакууме. Т.е. скорость красного света в стекле ЛК8 равна, примерно, 299 792 458/1,46751 = 204286484 м/с., а скорость синего света с длиной волны 479,99 нанометра равна 203113916 м/с. Имеются оптические среды, в которых скорость света существенно меньше. В кристаллах лазеров для некоторых длин волн показатель преломления близок к 2,8. Таким образом, скорость света в этих кристаллах чуть ли ни втрое меньше скорости света в вакууме.

Вита75

Так к слову. Скорость света в вакууме и скорость света в другой среде могут отличаться кардинально. Например в Америке (к сожалению не помню в какай лаборатории) смогли замедлить свет практически до полной его остановки.

А вот больше чем 1/299792458 секунды свет скорость развить не может, т.к. свет это обычная электромагнитная волна (такая же как рентген или тепло и радиоволны), отличается только длина волны, частота, то в современном представлении это волна в расслоенном пространстве-времени, и при квантовании этой волны мы получаем фотон (квант света). Это безмассовая частица, соответственно для фотона не существует времени. Это значит, для фотона который родился миллиарды лет назад (относительно сегодняшнего наблюдателя) вообще не прошло ни сколько времени. По формуле Е=МС2 (масса эквивалентна энергии) скорость света можно рассмотреть как постулат, получается что если разогнать частицу с не нулевой массой (например Электрон) до скорости света , то в нее надо вкачать безконечное число энергии, что физически не возможно. из этого следует, что скорость безмассового фатона 1/299792458 секунды (скорость света) это максимальная скорость в нашей видимой вселенной.

Людмила 1986

Фундаментальная физическая постоянная - скорость света в пустоте равна 299 792 458 м/с, это измерение скорости света было произведено в 1975 году. В школе обычно эту величину пишут как 300 000 000 м/с и используют для решения задач.

Еще в античные времена пытались выяснить эту величину, но многие ученые считали, что скорость света величина постоянная. И только в 1676 году датский астроном Олаф Ремер первый измерил скорость света и по его расчетам она равнялась 220 тысяч километров в секунду.

Грустный роджер

Скорость света по определению равна 299 792 458 м/с.

Современная тенденция - определение эталонов физических единиц на основе фундаментальных физических констант и высокостабильных природных процессов. Именоо поэтому основная физическая величина - время (определяемое через частоту), потому что технически максимальная стабильность (следовательно, и точность) достигается именно в эталоне частоты. Поэтому и другие единицы измерения стараются привести к частоте и фундументальным постоянным. И поэтому же метр, как единицу дины, определили через частоту, как наиболее точно фиксируемую величину, и фундаментальную постоянную - скорость света.

Мелкое замечание: определение метра и эталон метра - это разные вещи. Определение метра - это расстояние, которое свет прохождит за 1/299792458 секунды. А эталон метра - это некоторое техничекое устройство, конструкция которого может быть основана и на других вещах.

Arnis

Для более простого понимания, скорость света можно считать 300 000 км в секунду. Для сравнения: Длина экватора земли 40 000 км, то есть за секунду свет может облететь вокруг земли, даже по линии экватора, более 7 раз. Это очень огромная скорость. Люди добились максимальной скорости скорости всего в 2-3 раза превышающей скорость звука, то есть около 3 - 4 тысяч километров в час, или около 1 км в секунду. Вот что такое скорость света в сравнении с существующими технологиями человечества.

Sirina

По википедии скорость света-это

299 792 458 м/c - это скорость света в вакууме. Для удобства в решении задач используют цифру 300 000 000 м/c.Скорость света в вакууме определяется по формуле:

Если же говорить о скорости света в какой-либо среде,то

Скорость света в воздухе почти равна скорости света в вакууме.

А вот уже в воде она примерно на 25% меньше, чем в воздухе.

Дольфаника

Если раньше понятие скорость света обозначало что-то запредельное, то сейчас уже строят гиперзвуковые истребители,которые должны поступить на вооружение к 2030 году.

Скорость света равна 299 792 458 метров в секунду или если перевести 1 079 252 848,8 км в час , которую впервые определил в 1676 году датчанин О. К. Рёмер.

Freddiet

На данный момент считается, что скорость света равна 299 792 458 метров в секунду.

Но если эта величина не нужна вам с научной точностью, например в школьных задачах, принято округлять эту величину до 300 000 000 метров в секунду, или 300 000 километров в секунду, как говорят чаще.

bolshoyvopros.ru

Читайте также