Определение минутной вентиляции легких в разных условиях

Вентиляция легких: легочные объемы и емкости. Методы исследования

Вентиляция легких – это газообмен между альвеолярным воздухом и легкими. Количественной характеристикой легочной вентиляции служит минутный объем дыхания (МОД) - объем воздуха, проходящий через легкие за 1 минуту. Определить МОД можно, если знать частоту дыхательных движений (в покое у взрослого человека составляет 16-20 в 1 минуту) и дыхательный объем (ДО=350 - 800 мл).

МОД=ЧД´ДО = 5000 -16000 мл/мин

Однако в легочном газообмене участвует не весь вентилируемый воздух, а лишь та его часть, которая достигает альвеол. Дело в том, что примерно 1/3 дыхательного объема покоя приходится на вентиляцию так называемого анатомического мертвого пространства (МП), заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Но иногда некоторые из альвеол не функционируют или функционируют частично из-за отсутствия или уменьшения кровотока в близлежащих капиллярах. С функциональной точки зрения эти альвеолы также представляют собой мертвое пространство. При включении альвеолярного мертвого пространства в общее мертвое пространство последнее называют не анатомическим, а физиологическим мертвым пространством. У здорового человека анатомическое и физиологическое пространства почти равны, но если часть альвеол не функционирует или функционирует только частично, объем физиологического мертвого пространства может оказаться больше анатомического в несколько раз.

Следовательно, вентиляция альвеолярных пространств — альвеолярная вентиляция (АВ) представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства.

АВ= ЧД´(ДО –МП)

Интенсивность альвеолярной вентиляции зависит от глубины дыхания: чем глубже дыхание (больше ДО), тем интенсивнее вентиляция альвеол.

Максимальная вентиляция легких (МВЛ) - объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений, Максимальная вентиляция возникает во время интенсивной работы, при недостатке содержания О2 (гипоксия) и избытке СО2 (гиперкапния) во вдыхаемом воздухе. В этих условиях МОД может достигать 150 - 200 л в 1 минуту.

Перечисленные выше показатели являются динамическими и отражают эффективность функционирования системы дыхания во временном аспекте (обычно за 1 минуту).

Кроме динамических показателей внешнее дыхание оценивают по статическим показателям (рис.7):

§ дыхательный объем (ДО) это объем воздуха, вдыхаемый и выдыхаемый при спокойном дыхании (у взрослого человека составляет 350 - 800 мл);

§ резервного объема вдоха (РОвд)– дополнительный объем воздуха, который можно вдохнуть сверх спокойного вдоха при форсированном дыхании (РО вд в среднем 1500-2500 мл);

§ резервного объема выдоха (РОвыд)– максимальный дополнительный объем воздуха, который можно выдохнуть после спокойного выдоха (РО выд в среднем 1000-1500 мл);

§ остаточный объем легких (00) -объем воздуха, который остается в легких после максимального выдоха (ОО= 1000 -1500 мл)

Рис.7. Спирограмма при спокойном и форсированном дыхании

При спадении легких (при пневмотораксе) большая часть остаточного воздуха выходит (коллапсный остаточный объем =800-1000 мл), а в легких остается минимальный остаточный объем(200-400 мл). Этот воздух задерживается в так называемых воздушных ловушках, так как часть бронхиол спадается раньше альвеол (концевые и дыхательные бронхиолы не содержат хрящей). Эти знания используются в судебной медицине для теста живым ли родился ребенок: легкое мертворожденного тонет в воде, так как не содержит воздуха.

Суммы легочных объемов называют емкостями легких.

Различают следующие емкости легких:

1. общая емкость легких (ОЕЛ) - объем воздуха, находящегося в легких после максимального вдоха – включает все четыре объема

2. жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ - это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе.

ЖЕЛ = ДО + РOвд + РОвыд

ЖЕЛ составляет у мужчин 3,5 - 5,0 л, у женщин - 3,0-4,0л. Величина ЖЕЛ зависит от роста, возраста, пола, степени функциональной подготовки.

С возрастом этот показатель снижается (особенно после 40 лет). Это связано со снижением эластичности легких и подвижности грудной клетки. У женщин ЖЕЛ в среднем на 25 % меньше, чем у мужчин. ЖЕЛ зависит от роста, так как величина грудной клетки пропорциональна другим размерам тела. ЖЕЛ зависит от степени тренированности: особенно велика ЖЕЛ (до 8 л) у пловцов и гребцов, так как у этих спортсменов хорошо развиты вспомогательные мышцы (большие и малые грудные).

3. емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 - 2,5 л;

4. функциональная остаточная емкость (ФОЕ) - объем воздуха в легких после спокойного выдоха. В легких при спокойном вдохе и выдохе постоянно содержится примерно 2500 мл воздуха, заполняющего альвеолы и нижние дыхательные пути. Благодаря этому газовый состав альвеолярного воздуха сохраняется на постоянном уровне.

При обычном исследовании ОЕЛ, ОО и ФОЕ недоступны для измерения. Их определяют с помощью газоанализаторов, изучая изменение состава газовых смесей в замкнутом контуре (содержание гелия, азота).

Для оценки вентиляционной функции легких, состояния дыхательных путей, изучения паттерна (рисунка) дыхания применяются различные методы исследования: пневмография, спирометрия, спирография.

Спирография(лат. spiro дышать + греч. graphо писать, изображать) — метод графической регистрации изменений легочных объемов при выполнении естественных дыхательных движений и волевых форсированных дыхательных маневров.

Спирография позволяет получить ряд показателей, которые описывают вентиляцию легких.

В техническом выполнении все спирографы делятся на приборы открытого и закрытого типа (рис. 8).

Рис. 8. Схематическое изображение спирографа

В аппаратах открытого типа больной через клапанную коробку вдыхает атмосферный воздух, а выдыхаемый воздух поступает в мешок Дугласа или в спирометр Тисо (емкостью 100—200 л), иногда — к газовому счетчику, который непрерывно определяет его объем. Собранный таким образом воздух анализируют: в нем определяют величины поглощения кислорода и выделения углекислого газа за единицу времени. В аппаратах закрытого типа используется воздух колокола аппарата, циркулирующий в закрытом контуре без сообщения с атмосферой. Выдыхаемый углекислый газ поглощается специальным поглотителем.

В современных приборах, регистрирующих изменения объема легких при дыхании (как открытого, так и закрытого типов), имеются электронные вычислительные устройства для автоматической обработки результатов измерений.

При анализе спирограммы также определяют скоростные показатели. Вычисление скоростных показателей имеет большое значение в выявлении признаков бронхиальной обструкции.

§ Объём форсированного выдоха за 1 с (ОФВ1) — объём воздуха, изгоняемый с максимальным усилием из лёгких в течение первой секунды выдоха после глубокого вдоха, т.е. часть ФЖЕЛ, выдыхаемая за первую секунду. Прежде всего ОФВ1 отражает состояние крупных дыхательных путей и часто выражается в процентах от ЖЕЛ (нормальное значение ОФВ1 = 75% ЖЕЛ).

§ индекс Тиффноотношение ОФВ1/ФЖЕЛ, выраженное в %:

ИТ= ОФВ1 ´ 100%

ФЖЕЛ

Он определяется в тесте дыхательного «толчка» (тест Тиффно) и заключается в изучении одиночного форсированного выдоха, позволяет сделать важные диагностические заключения о функциональном состоянии дыхательного аппарата. В конце выдоха интенсивность дыхательного потока ограничивается за счет компрессии мелких дыхательных путей (рис.8).

Рис. 9. Схематическое изображение спирограммы и ее показателей

Объем форсированного выдоха за первую секунду (ОФВ1) в норме составляет не менее 70—75 %. Уменьшение индекса Тиффно и ОФВ1 является характерным признаком заболеваний, которые сопровождаются снижением бронхиальной проходимости — бронхиальной астмы, хронического обструктивного заболевания легких, бронхоэктатической болезни и пр.

По спирограмме можно определить объем кислорода, потребляемого организмом. При наличии системы компенсации кислорода в спирографе этот показатель определяют по наклону кривой поступления в него кислорода, при отсутствии такой системы — по наклону спирограммы спокойного дыхания. Разделив этот объем на число минут, в течение которых проводилась запись потребления кислорода, получают величину 2 (составляет 200-400 мл в покое).

Все показатели легочной вентиляции изменчивы. Они зависят от пола, возраста, веса, роста, положения тела, состояния нервной системы больного и прочих факторов. Поэтому для правильной оценки функционального состояния легочной вентиляции абсолютное значение того или иного показателя является недостаточным. Необходимо сопоставлять полученные абсолютные показатели с соответствующими величинами у здорового человека того же возраста, роста, веса и пола — так называемыми должными показателями.

для мужчин ДЖЕЛ = 5, 2xР - 0, 029xВ - 3, 2

для женщин ДЖЕЛ = 4, 9xР - 0, 019xВ - 3, 76

для девочек от 4 до 17 лет при росте от 1, 0 до 1, 75 м:

ДЖЕЛ = 3, 75xР - 3, 15

для мальчиков того же возраста при росте до 1, 65 м:

ДЖЕЛ = 4, 53xР - 3, 9, а при росте св. 1, 65 м - ДЖЕЛ = 10xР - 12, 85

где Р- рост (м), В -возраст

Такое сопоставление выражается в процентах по отношению к должному показателю. Патологическими считаются отклонения, превышающие 15—20 % от величины должного показателя.

Контрольные вопросы

1. Что такое легочная вентиляция, какой показатель ее характеризует ?

2. Что такое анатомическое и физиологическое мертвое пространство?

3. Как определить альвеолярную вентиляцию ?

4. Что такое МВЛ ?

5. Какие статические показатели используют для оценки внешнего дыхания ?

6. Какие емкости легких бывают ?

7. От каких факторов зависит величина ЖЕЛ ?

8. С какой целью используют спирографию ?

9. Как определяют по спирограмме скоростные показатели (ОФВ1 и индекс Тиффно) ?

10. Что такое должные показатели, как их определяют ?

studopedia.ru

3.Легочные объемы и емкости. Методы определения. Минутный объем дыхания и легочной вентиляции в покое и при физической нагрузке.

Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыха­тельных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Легочные объемы. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических инди­видуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) — объем воздуха, который вды­хает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РОвд) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд составляет 1,5—1,8 л.

Резервный объем выдоха (РОвыд) — максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОвыд ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л.

Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес и их, описание выходит за рамки курса нормальной физиологии.

Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, ре­зервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.   

Емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд составляет в среднем 2,0—2,3 л.

Функциональная остаточная емкость (ФОЕ) — объ­ем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или разведения газов, и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизон­тальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растя­жимости грудной клетки.

Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ - ОО + ЖЕЛ или ОЕЛ - ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей обычно производят методами спирометрии, пневмотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких).

Минутный объем дыхания (МОД) — это общее количе­ство воздуха, которое проходит через легкие за 1 мин. У человека в покое МОД составляет в среднем 8 л*мин-1. МОД можно рас­считать, умножив частоту дыхания в минуту на величину дыха­тельного объема.

Максимальная вентиляция легких — объем возду­ха, который проходит через легкие за 1 мин во время максимальных по частоте и глубине дыхательных движений. Максимальная вен­тиляция вызывается произвольно, возникает во время работы, при недостатке содержания О2 (гипоксия), а также при избытке содер­жания СО2 (гиперкапния) во вдыхаемом воздухе.

При максимальной произвольной вентиляции легких частота дыхания может возрастать до 50—60 в 1  мин, а ДО — до 2—4 л. В этих условиях МОД может доходить до 100—200 л*мин-1.

Максимальную произвольную вентиляцию измеряют во время форсированного дыхания, как правило, в течение 15 с. В норме у человека при физической нагрузке уровень максимальной вентиля­ции всегда ниже, чем максимальная произвольная вентиляция.

StudFiles.ru

ВЕНТИЛЯЦИЯ ЛЕГКИХ

Д Ы Х А Н И Е

Дыхание – это совокупность процессов, которые обеспечивают газообмен между клетками и окружающей средой. Пять этапов: (1) вентиляция легких (газообмен между атмосферой и альвеолярным пространством); (2) газообмен в легких (между альвеолярным пространством и кровью); транспорт газов кровью; (4) газообмен в тканях (между кровью и клетками); (5) окислительные процессы в клетках. Примечание: (1) и (2) этапы – это внешнее дыхание; (4) и (5) этапы – это внутреннее дыхание. Дыхательный аппаратсостоит из грудной клетки, воздухоносных путей и легких. Грудная клетка выполняет защитную и насосную функции. Воздухоносные пути очищают, согревают и увлажняют вдыхаемый воздух. Кроме того, они являются важной рефлексогенной зоной (защитные кашлевой и чихательный рефлексы, регуляция дыхания). Легкие: главная функция – газообмен. Негазообменные функции легких – защитная (аэрогематический барьер), выделительная, терморегуляторная, голосообразующая (речевая), а также функция выработки одних и инактивации других биологически активных веществ.

ВЕНТИЛЯЦИЯ ЛЕГКИХ

Механизм вдоха: Вдох всегда активный - (1) за счет сокращения инспираторных мышц (диафрагмы и наружных межреберных мышц) происходит (2) увеличение объема грудной клетки, (3) увеличивается объем легких, т.к. легкие пассивно следуют за грудной клеткой (за счет сил молекулярного сцепления жидкости, заполняющей плевральную полость). Примечание: плевральная полость – это узкая капиллярная щель (7-10 мкм) между листками висцеральной и париетальной плевры, заполненная плевральной жидкостью). (4) Расширение легких приводит к понижению внутриальвеолярного давления – и воздух из атмосферы входит в легкие. Примечание: при форсированном вдохе дополнительно сокращаются мышцы плечевого пояса (при фиксированных верхних конечностях).

Механизм выдоха: Выдох в покое пассивный – (1) расслабление инспираторных мышц приводит к (2) уменьшению объема грудной клетки и (3) легких. Уменьшение объема легких приводит к повышению внутриальвеолярного давления – и воздух из легких выходит в атмосферу. Примечание: главный фактор, обеспечивающий выдох – эластическая тяга легких. Эластическая тяга легких (ЭТЛ) – это сила, с которой легкие стремятся уменьшить свой объем. ЭТЛ на 1/3 обеспечивается эластичностью тканей легкого и на 2/3 – силой поверхностного натяжения тонкого слоя жидкости на внутренней поверхности альвеол. Сила поверхностного натяжения жидкости в альвеолах в 8-10 раз меньше, чем сила поверхностного натяжения чистой воды, потому что в ней присутствует сурфактант – поверхностно активное вещество (смесь фосфолипидов, белков и ионов кальция). Сурфактант секретируется специальными альвеолоцитами. При отсутствии сурфактанта в легких новорожденного ЭТЛ слишком велика, легкое не может растягиваться и остается спавшимся (ателектаз, дистресс новорожденного). Примечание: при форсированном выдохе происходит сокращение экспираторных мышц (мышц брюшного пресса и внутренних межреберных мышц). Выдох становится активным.

Отрицательное давление в плевральной полости является следствием растяжения легких (а не причиной). Объяснение: у новорожденного объем легких полностью соответствует объему грудной полости. Грудная полость заполнена нерастянутыми легкими, поэтому большую часть дыхательного цикла давление в плевральной полости равно 0 (атмосферное) и становится немного отрицательным только на высоте вдоха (-1,5 мм рт.ст), когда легкие растягиваются и появляется ЭТЛ. В процессе роста объем грудной клетки увеличивается гораздо быстрее, чем объем легких. У взрослого человека легкие заполняют все грудную полость только потому, что они все время растянуты.Поэтому давление в плевральной полости всегда отрицательное (оно меньше атмосферного на величину ЭТЛ). Доказательством того, что легкие все время растянуты, служит пневмоторакс (поступление воздуха в плевральную полость, например, при нарушении герметичности грудной клетки). При пневмотораксе легкие спадаются до своего анатомического объема (за счет ЭТЛ), а грудная клетка немного расширяется. Значение отрицательного давления в плевральной полости: (1) увеличивает амплитуду движений диафрагмы во время дыхательного цикла (за счет отрицательного давления в плевральной полости и положительного давления в брюшной полости), (2) поддерживает открытый просвет мелких бронхиол и артериол (за счет эластической тяги альвеол, окружающих мелкую бронхиолу или артериолу), (3) способствует движению венозной крови (и лимфы) по направлению к сердцу (присасывающая роль грудной клетки), (4) имеет важное диагностическое значение (по величине отрицательного давления в плевральной полости судим о величине ЭТЛ). Измерение давления в плевральной полости: (1) прямой метод – прокол грудной стенки и введение в плевральную полость иглы, связанной с манометром; (2) непрямой метод – измерение давления с помощью зонда, введенного в пищевод (внутрипищеводное давление соответствует давлению в плевральной полости). В конце выдоха давление = -3-6 мм рт.ст (объем легкого уменьшился, ЭТЛ уменьшилась), а в конце вдоха давление = -6-9 мм рт.ст (объем легкого увеличился, ЭТЛ увеличилась).

ПОКАЗАТЕЛИ СОСТОЯНИЯ ДЫХАТЕЛЬНОГО АППАРАТА

(1) статические показатели (л, мл): (2) динамические показатели (л/мин)

легочные объемы (4 объема) (показатели вентиляции):

легочные емкости (4 емкости) МОД – минутный объем дыхания;

АВ – альвеолярная вентиляция;

МВЛ – максимальная вентиляция

(3) показатели бронхиальной проходимости (л/сек)

(объемная скорость движения воздуха):

пневмотахометрические показатели;

объем форсированного выдоха (ОФВ1)

ЛЕГОЧНЫЕ ОБЪЕМЫ

(1) дыхательный объем (ДО) – объем воздуха, который мы вдыхаем (и выдыхаем) во время одного спокойного вдоха (и выдоха) – 500 мл. Определяется методом спирометрии.

(2) резервный объем вдоха (РОвд) – объем воздуха, который мы можем вдохнуть после спокойного вдоха – 2000 мл. Определяется методом спирометрии.

(3) резервный объем выдоха (РОвыд) – объем воздуха, который мы можем выдохнуть после спокойного выдоха – 1500 мл. Определяется методом спирометрии.

(4) остаточный объем (ОО) – объем воздуха, который остается в легких после максимального выдоха – 1000 мл. Определяется методом разведения индикатора (гелий).

ЛЕГОЧНЫЕ ЕМКОСТИ (каждая емкость состоит из 2-х и более объемов)

(1) жизненная емкость легких (ЖЕЛ) – максимальный объем воздуха, который мы можем выдохнуть после максимально глубокого вдоха (ДО + РОвд + РОвыд) = 4-5 литров (значение: показатель общего физического развития). Определяется методом спирометрии.

(2) емкость вдоха – максимальный объем воздуха, который мы можем вдохнуть после спокойного выдоха (ДО + РОвд). Определяется методом спирометрии.

(3) функциональная остаточная емкость (ФОЕ) – объем воздуха, который остается в легких после спокойного выдоха (РОвыд + ОО) = 2500 мл (значение: показатель состояния эластической тяги легких. При снижении ЭТЛ этот показатель увеличивается). Определяется методом плетизмографии, разведения индикатора.

(4) общая емкость легких (ОЕЛ) – объем воздуха, который находится в легких после максимально глубокого вдоха (сумма всех 4-х объемов) = 5-6 литров. Определяется методом плетизмографии, разведения индикатора.

ПОКАЗАТЕЛИ ВЕНТИЛЯЦИИ

Минутный объем дыхания (МОД) – объем воздуха, который проходит через легкие за минуту. МОД = ДО (дыхательный объем) х ЧД (частота дыхания) = 6-8 л/мин

Альвеолярная вентиляция (АВ) – объем воздуха, который проходит через альвеолярное пространство за минуту и участвует в газообмене.

АВ = (ДО – ОМП) х ЧД, где ОМП - объем мертвого пространства (150 мл - объем дыхательных путей, в котором не происходит газообмен). Например, АВ = (500 – 150) х 12 = 4200 мл/мин

Максимальная вентиляция легких (МВЛ) – максимальный объем воздуха, который может пройти через легкие за минуту (при максимально возможной глубине и частоте дыхания). Показывает резервные возможности дыхательного аппарата. Достигает 180 л/мин. (Исследование проводится 10-15 сек).

ИССЛЕДОВАНИЕ БРОНХИАЛЬНОЙ ПРОХОДИМОСТИ

Пневмотахометрия – определение объемной скорости движения воздуха (л/сек) через датчик во время (а) форсированного вдоха и (б) форсированного выдоха. При увеличении сопротивления дыхательных путей пневмотахометрические показатели уменьшаются.

Определение объема форсированного выдоха за первую секунду (ОФВ1) – во время спирометрического исследования пациент должен сделать максимальный вдох, задержать дыхание на вдохе, а потом как можно быстрее выдохнуть. За первую секунду форсированного выдоха в норме он должен выдохнуть 70% от форсированной жизненной емкости легких. При увеличении сопротивления дыхательных путей этот показатель уменьшается.

Лекция 14

studopedia.ru

/ Лекции по физе / Лекция8

Лекция 8. ЛЕГОЧНАЯ ВЕНТОЛЯЦИЯ И ЛЕГОЧНАЯ ДИФФУЗИЯ. ГАЗООБМЕН В ЛЕГКИХ И ТКАНЯХ

Основные вопросы: Значение дыхания для организма. Основные этапы процесса дыхания. Дыхательный цикл. Основные и вспомогательные дыхательные мышцы. Механизм вдоха и выдоха. Физиология дыхательных путей. Легочные объемы. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Минутный объем дыхания и минутная вентиляция легких. Анатомическое и физиологическое дыхательное мертвое пространство. Типы легочной вентиляции. Напряжение газов, растворенных в крови. Парциальное давление газов в альвеолярном воздухе. Газообмен в тканях и легких.

Роль дыхательного тракта в речеобразовательной функции.

Совокупность процессов, которые обеспечивают поступление во внутреннюю среду О2, используемого для окисления органических веществ и удаление из организма СО2, образовавшегося в результате тканевого метаболизма, называют дыханием.

Выделяют три этапа дыхания:

1) внешнее дыхание,

2) транспорт газов,

3) внутреннее дыхание.

I этап - внешнее дыхание - это газообмен в легких, включающий в себя легочную вентиляцию и легочную диффузию.

Легочная вентиляция - это процесс обновления газового состава альвеолярного воздуха, обеспечивающий поступление в легкие О2 и выведение из них СО2.

Легочная диффузия - это процесс обмена газов между альвеолярным воздухом и кровью легочных капилляров.

II этап - транспорт газов заключается в переносе кровью кислорода от легких к тканям и углекислоты - от тканей к легким.

III этап - внутреннее тканевое дыхание – это процесс обновления газового состава в тканях, состоящий из газообмена между кровью тканевых капилляров и тканями, а также из клеточного дыхания.

Полный дыхательный цикл состоит из трех фаз:

1) фаза вдоха (инспирация),

2) фаза выдоха (экспирация),

3) дыхательная пауза.

Изменения объема грудной полости в процессе дыхательного цикла обусловлены сокращением и расслаблением дыхательных мышц. Они подразделяются на инспираторные и экспираторные. Различают основные и вспомогательные инспираторные мышцы.

К основным инспираторным мышцам относятся:

1) диафрагма,

2) наружные косые межреберные и межхрящевые мышцы.

При глубоком форсированном дыхании в акте вдоха участвуют вспомогательные инспираторные мышцы:

1) грудино-ключично-сосцевидная,

2) мышцы грудной клетки - большая и малая грудные, трапециевидные, ромбовидные, мышца, поднимающая лопатку.

Легкие находятся внутри грудной клетки и отделены от ее стенок плевральной щелью - герметически замкнутой полостью, которая располагается между париетальным и висцеральным листками плевры.

Давление в плевральной полости ниже атмосферного. Отрицательное , по сравнению с атмосферным, давление в плевральной щели обусловлено эластической тягой легочной ткани, направленной на спадение легких. Увеличение объема грудной полости во время спокойного вдоха последовательно вызывает:

1) снижение давления в плевральной щели до -6 -9 мм рт ст,

2) расширение воздуха в легких и их растяжение,

3) снижение внутрилегочного давления до -2 мм рт ст по сравнению с атмосферным,

4) поступление воздуха в легкие по градиенту между атмосферным и альвеолярным давлением.

Уменьшение объема грудной полости во время спокойного выдоха последовательно вызывает:

1) повышение давления в плевральной щели с -6 -9 мм рт ст до -3 мм рт ст,

2) уменьшение объема легких за счет их эластической тяги,

3) повышение внутрилегочного давления до +2 мм рт ст по сравнению с атмосферным,

4) выход воздуха из легких в атмосферу по градиенту давления.

Объем воздуха, который находится в легких после максимально глубокого вдоха, называется общей емкостью легких (ОЕЛ).

У взрослого человека ОЕЛ составляет от 4200 до 6000 мл и состоит из двух частей:

1) жизненной емкости легких (ЖЕЛ) - 3500-5000 мл,

2) остаточного объема легких (ООЛ) - 1000-1200 мл.

Остаточный объем легких - это количество воздуха, которое остается в легких после максимально глубокого выдоха.

Жизненная емкость легких - это объем воздуха, который можно максимально выдохнуть после максимально глубокого вдоха.

ЖЕЛ состоит из трех частей:

1) дыхательный объем (ДО) - 400-500 мл,

2) резервный объем вдоха - около 2500 мл,

3) резервный объем выдоха - около 1500 мл.

Дыхательный объем - это количество воздуха, удаляемого из легких при спокойном выдохе после спокойного вдоха.

Резервный объем вдоха - это максимальное количество воздуха, которое можно дополнительно вдохнуть после спокойного вдоха.

Резервный объем выдоха - это максимальное количество воздуха, которое можно дополнительно выдохнуть после спокойного выдоха.

Резервный объем выдоха и остаточный объем составляют функциональную остаточную емкость (ФОЕ) - количество воздуха, остающееся в легких после спокойного выдоха (2000-2500 мл).

Легочная вентиляция характеризуется минутным объемом дыхания (МОД) - количеством воздуха, который вдыхается или выдыхается за 1 мин. МОД зависит от величины дыхательного объема и частоты дыхания: МОД = ДО х ЧД.

В обычных условиях человек дышит атмосферным воздухом, в составе которого содержится: О2 - 21%, СО2 - 0,03%, N2 - 79%.

В выдыхаемом воздухе: О2 - 16,0%, СО2 - 4%, N2 -79,7%.

В альвеолярном воздухе: О2 - 14,0%, СО2 - 5,5%, N2 - 80%.

Различие в составе выдыхаемого и альвеолярного воздуха обусловлено смешиванием альвеолярного газа с воздухом дыхательного мертвого пространства.

Различают анатомическое и физиологическое мертвое пространство.

Анатомическое дыхательное мертвое пространство - это объем воздухопроводящих путей (от полости носа до бронхиол) в которых не происходит газообмена между воздухом и кровью.

Физиологическое дыхательное мертвое пространство (ФМП) - это объем всех участков дыхательной системы, в которых не происходит газообмен.

Количество воздуха, который участвует в обновлении альвеолярного газа за 1 мин, называется минутной вентиляцией легких (МВЛ). МВЛ определяется как произведение разности дыхательного объема легких и объема дыхательного мертвого пространства на частоту дыхания: МВЛ = (ДО - ДМП) х ЧД.

Перенос газов в воздухоносных путях происходит в результате конвекции и диффузии.

Конвективный способ переноса в воздухоносных путях обусловлен движением смеси газов по градиенту их общего давления.

В ходе ветвления воздухоносных путей их суммарное сечение значительно возрастает. Линейная скорость потока вдыхаемого воздуха по мере приближения к альвеолам постепенно падает со 100 см/с до 0,02 см/с. Поэтому к конвективному способу переноса газов присоединяется диффузионный обмен.

Диффузия газа - это пассивное движение молекул газа из области большего парциального давления или напряжения в зону меньшего.

Парциальное давление газа - это часть общего давления, которая приходится на какой-либо газ, смешанный с другими газами.

Парциальное давление газа, растворенного в жидкости, которое уравновешивается давлением этого же газа над жидкостью, называют напряжением газа.

Градиент давления О2 направлен в альвеолы, где его парциальное давление ниже, чем во вдыхаемом воздухе. Молекулы СО2 движутся в обратном направлении. Чем медленнее и глубже дыхание , тем интенсивнее идет внутрилегочная диффузия О2 и СО2.

Постоянство состава альвеолярного воздуха и соответствие его потребностям метаболизма обеспечивается регуляцией вентиляции легких.

Различают десять основных типов вентиляции легких:

1) нормовентиляция,

2) гипервентиляция,

3) гиповентиляция,

4) эйпноэ,

5) гиперпноэ,

6) тахипноэ,

7) брадипноэ,

8) апноэ,

9) диспноэ,

10) асфиксия.

Нормовентиляция - это газообмен в легких, который соответствует метаболическим потребностям организма.

Гипервентиляция– это газообмен в легких, который превышает метаболические потребности организма.

Гиповентиляция - это газообмен в легких, который не достаточен для обеспечения метаболических потребностей организма.

Эйпноэ – это нормальная частота и глубина дыхания в покое, которые сопровождаются ощущением комфорта.

Гиперпноэ - это увеличение глубины дыхания выше нормы.

Тахипноэ - это увеличение частоты дыхания выше нормы.

Брадипноэ - это уменьшение частоты дыхания ниже нормы.

Диспноэ (одышка) - это недостаточность или затрудненность дыхания, которые сопровождаются неприятными субъективными ощущениями.

Апноэ - это остановка дыхания, обусловленная отсутствием физиологической стимуляции дыхательного центра.

Асфиксия - это остановка или угнетение дыхания, связанные с нарушением поступления воздуха в легкие вследствие непроходимости дыхательных путей.

Перенос О2 из альвеолярного газа в кровь и СО2 из крови в альвеолы происходит пассивно путем диффузии за счет разности парциального давления и напряжения этих газов по обе стороны аэрогематического барьера. Аэрогематический барьер образован альвеолокапиллярной мембраной, которая включает в себя слой сурфактанта, альвеолярный эпителий, две базальные мембраны и эндотелий кровеносного капилляра.

Парциальное давление О2 в альвеолярном воздухе 100 мм рт ст. Напряжение О2 в венозной крови легочных капилляров 40 мм рт ст. Градиент давления, составляющий 60 мм рт ст, направлен из альвеолярного воздуха в кровь.

Парциальное давление СО2 в альвеолярном воздухе 40 мм рт ст. Напряжение СО2 в венозной крови легочных капилляров 46 мм рт ст. Градиент давления, составляющий 6 мм рт ст, направлен из крови в альвеолы.

Малый градиент давления СО2 связан с его высокой диффузионной способностью , которая в 24 раза больше, чем для кислорода. Это обусловлено высокой растворимостью углекислоты в солевых растворах и мембранах.

Время протекания крови через легочные капилляры составляет около 0,75 с. Этого достаточно для практически полного выравнивания парциального давления и напряжения газов по обе стороны аэрогематического барьера. При этом кислород растворяется в крови, а двуокись углерода переходит в альвеолярный воздух. Поэтому венозная кровь превращается здесь в артериальную.

Напряжение О2 в артериальной крови 100 мм рт ст, а в тканях менее 40 мм рт ст. При этом градиент давления, составляющий более 60 мм рт ст, направлен из артериальной крови в ткани.

Напряжение СО2 в артериальной крови 40 мм рт ст, а в тканях - около 60 мм рт ст. Градиент давления, составляющий 20 мм рт ст, направлен из тканей в кровь. Благодаря этому артериальная кровь в тканевых капиллярах превращается в венозную.

Таким образом, звенья газотранспортной системы характеризуются встречными потоками дыхательных газов: О2 перемещается из атмосферы к тканям, а СО2 - в обратном направлении.

Роль дыхательного тракта в речеобразовательной функции

Человек может волевым усилием изменять частоту и глубину дыхания и даже на время остановить его. Это особенно важно в связи с тем, что дыхательный тракт используется человеком для осуществления речевой функции.

У человека отсутствует специальный звукообразующий речевой орган. К звукопроизводящей функции приспособлены органы дыхания – легкие, бронхи, трахея и гортань, которые вместе с органами ротового отдела формируют речевой тракт.

Воздух, проходящий во время выдоха по речевому тракту, заставляет вибрировать голосовые связки, расположенные в гортани. Вибрация голосовых связок является причиной звука, который называется голосом. Высота голоса зависит от частоты колебания голосовых связок. Сила голоса определяется амплитудой колебаний, а его тембр определяется функцией резонаторов – глотки, полости рта, полости носа и его придаточных пазух.

В функции формирование речевых звуковпроизношении, участвуют: язык, губы, зубы, твердое и мягкое небо. Дефекты речевой звукоформирующей функции – дислалии, могут быть связаны с врожденными и приобретенными аномалиями органов ротового отдела – расщелинами твердого и мягкого неба, с аномалиями формы зубов и их расположения в альвеолярных дугах челюстей, полными или частичными адентиями. Дислалии появляются также при нарушении секреторной функции слюнных желез, жевательной и мимической мускулатуры, височно-нижнечелюстных суставов.

4

StudFiles.ru

Читайте также