Температура определение в физике

/ Archive / Конспект лекций от 02.04.12 - копия / ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ 2

4

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты.

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

  1. Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

  2. Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

  3. Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 00С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 1000С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами.

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV=const

Закон Бойля-Мариотта.

Объём V данного количества газа ν при постоянной температуре t0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V0 – объём газа при температуре t0 = 00C; V – объём газа при температуре t0, αv – температурный коэффициент объёмного расширения,

Закон Гей-Люссака.

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t0= - 2730С.

3).Изохорный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P0 – объём газа при температуре t0 = 00C; P – объём газа при температуре t0, αp – температурный коэффициент давления,

Закон Шарля.

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t0= - 2730С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 2730 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T= t0C+ 273

t0C= T– 273

Новая шкала оказалась более удобной для записи газовых законов.

StudFiles.ru

температура это:

температура ТЕМПЕРАТУ́РА -ы; ж. [лат. temperatura - правильное соотношение, нормальное состояние] 1. Величина, характеризующая тепловое состояние какого-л. тела, вещества. Умеренная, средняя т. Постоянная, комнатная т. Июльская, летняя т. Ночная, дневная т. Т. воды, воздуха. Т. плавления, кипения, замерзания какого-л. тела. Т. в комнате. Т. по Цельсию, по Фаренгейту. Т. ниже нуля. Колебания, изменения температуры. Повысить, понизить температуру. Нагреть, довести что-л. до какой-л. температуры. Следить за температурой. 2. Степень теплоты человеческого тела как показатель состояния здоровья. Повышенная, нормальная, пониженная т. Т. раненого. Сбить кому-л. температуру. Т. повышается. Т. скачет (разг.). У больного т. сорок градусов. Измерить температуру градусником, рукой, губами. 3. Разг. Повышенная степень теплоты тела как показатель нездоровья. У ребёнка т. У него нет температуры. Ходить с температурой на работу, работать с температурой. Температу́рка, -и; ж. Смягчит. (3 зн.). Как ваша т.? Температу́рный, -ая, -ое. Т-ые изменения. Т. режим электропечи. Т-ая кривая (график изменений цифровых показателей температуры). Т. шов (техн.; промежуток, щель между частями какой-л. конструкции, делающая безопасным расширение смежных частей при повышении температуры). Т. лист (лист, содержащий запись ежедневной температуры больного). * * * температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия системы. Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различные температуры, происходит теплообмен. Более высокой температурой обладают те тела, у которых средняя кинетическая энергия молекул (атомов) выше. Измеряют температуры термометрами на основе зависимости какого-либо свойства тела (объёма, электрического сопротивления и т. п.) от температуры. Теоретически температура определяется на основе второго начала термодинамики как производная от энергии тела по его энтропии. Так определяемая температура всегда положительна, её называют абсолютной температурой или температурой по термодинамической температурной шкале (обозначается Т). За единицу абсолютной температуры в СИ принят кельвин (К). Значения температур по шкале Цельсия (t, °C) связаны с абсолютной температурой соотношением t = Т 273,15 К (1°C = 1°К). * * * ТЕМПЕРАТУРА ТЕМПЕРАТУ́РА (от лат. temperatura — надлежащее смешение, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия системы. Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между ее частями, имеющими различную температуру, происходит теплообмен (см. ТЕПЛООБМЕН). Более высокой температурой обладают те тела, у которых средняя кинетическая энергия молекул (атомов) выше. Измеряют температуру термометрами на основе зависимости какого-либо свойства тела (объема, электрического сопротивления и т. п.) от температуры. Теоретически температура определяется на основе второго начала термодинамики (см. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ)как производная от энергии тела по его энтропии. Так, определяемая температура всегда положительна, ее называют абсолютной температурой или температурой по термодинамической температурной шкале (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА)(обозначается Т). За единицу абсолютной температуры в СИ (см. СИ (система единиц)) принят кельвин (К). Значения температуры по шкале Цельсия (t, °С) связаны с абсолютной температурой соотношением t=T-273,15K (1 °С=1 К).

Энциклопедический словарь. 2009.

dic.academic.ru

Понятие о температуре и о температурных шкалах

Средства измерения температуры

Лекция №7

Бесконтактные датчики положения механизмов

Наиболее распространены бесконтактные датчики положения следующих типов: индуктивные, генераторные, магнитогерконовые и фотоэлектронные. Указанные датчики не имеют механического контакта с подвижным объектом, положение которого контролируется.

Бесконтактные датчики положения обеспечивают высокое быстродействие и большую частоту включений механизма. Определенным недостатком этих датчиков является зависимость, их точности от изменения напряжения питания и температуры. В зависимости от требований выходным аппаратом этих устройств может быть как бесконтактны логический элемент, так и электрическое реле.

В схемах точной остановки электроприводов бесконтактные датчики могут использоваться как для подачи команды на переход к пониженной частоте вращения, так и для окончательной остановки.

· Термопара

· Термометр сопротивления

· Пирометр

Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

«... мерилом температуры является не само движение, а хаотичность этого движения. Хаотичность состояния тела определяет его температурное состояние, и эта идея (которая впервые была разработана Больцманом), что определённое температурное состояние тела вовсе не определяется энергией движения, но хаотичностью этого движения, и является тем новым понятием в описании температурных явлений, которым мы должны пользоваться ...» (П. Л. Капица)

В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0° C) и температуре кипения (100° C).

t= Т-То (7.1),

где То =273,15 К;

t- температура в градусах Цельсия;

Т - температура в Кельвинах.

Температуру, выраженную в градусах Цельсия обозначают «°С».

По размеру единицы физической величины градус Цельсия равен Кельвину.

Температуру измеряют с помощью средств измерений, использующих различные термометрические свойства жидкостей, газов и твердых тел. К таким средствам измерений относятся:

- термометры расширения;

- термометры манометрические;

- термометры сопротивления с логометрами или мостами;

- термопары с милливольтметрами или потенциометрами;

- пирометры излучения.

Температуру измеряют контактным (с помощью термометров сопротивления, манометрических термометров и термометров термоэлектрических) и бесконтактным (с помощью пирометров) методами.

Следует помнить:

- наиболее высокая точность измерений температуры достигается при контактных методах измерений;

- бесконтактный метод служит для измерений высоких температур, где невозможно измерять контактными методами и не требуется высокой точности.

Измерительная система температур представляет собой совокупность термометрического преобразователя (датчика) и вторичного измерительного прибора.

Термометрический преобразователь - измерительный преобразователь температуры, предназначенный для выработки сигнала измерительной информации в форме, удобной для передачи дальнейшего преобразования, обработки или (и) хранения, но не поддающейся непосредственному восприятию наблюдением.

К термометрическим преобразователям относят:

- термометры сопротивления;

- термоэлектрические термометры (термопары);

- телескоп радиационного пирометра.

Таблица 1

Термометрическое свойство Наименование устройства Пределы длительного применения, 0С
Нижний Верхний
Тепловое расширение Жидкостные стеклянные термометры -190
Изменение давления Манометрические термометры -160
Изменение электрического сопротивления Электрические термометры сопротивления -200
Полупроводниковые термометры сопротивления -90
Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные -50
Термоэлектрические термометры (термопары) специальные
Тепловое излучение Оптические пирометры
Радиационные пирометры
Фотоэлектрические пирометры
Цветовые пирометры

Вторичный измерительный прибор - средство измерений, преобразующее выходной сигнал термометрического преобразователя в численную величину.

В качестве вторичных измерительных приборов используют логометры, мосты, милливольтметры, автоматические потенциометры.

Методы и технические средства измерения температуры

1. Термометры расширения и термометры манометрические

Жидкостные стеклянные термометры.

Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).

Жидкостный термометр состоит из стеклянного баллона, капиллярной трубки. Термометрическое вещество заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке заполняется инертным газом или может находиться под вакуумом. Выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.

В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.

Основные достоинства стеклянных жидкостных термометров – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.

Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:

1. технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;

2. лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;

3. жидкостные термометры (не ртутные); 4. повышенной точности и образцовые ртутные термометры;

5. электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;

6. специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.

Манометрические термометры

Действие манометрических термометров основано на использовании зависимости давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит из чувствительного элемента, воспринимающего температуру измеряемой среды, - металлического термобаллона, рабочего элемента манометра, измеряющего давление в системе, длинного соединительного металлического капилляра. При изменении температуры измеряемой среды давление в системе изменяется, в результате чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отградуированного в градусах температуры.

Манометрические термометры подразделяют на три основных разновидности:

1. жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнены жидкостью;

2. конденсационные, в которых термобаллон заполнен частично жидкостью с низкой температурой кипения и частично – ее насыщенными парами, а соединительный капилляр и манометр – насыщенными парами жидкости или, чаще, специальной передаточной жидкостью;

3. газовые, в которых вся измерительная система заполнена инертным газом.

Достоинствами манометрических термометров являются сравнительная простота конструкции и применения, возможность дистанционного измерения температуры и возможность автоматической записи показаний. К недостаткам манометрических термометров относятся: относительно невысокая точность измерения (класс точности 1.6; 2.5; 4.0 и реже 1.0); небольшое расстояние дистанционной передачи показаний (не более 60 метров) и трудность ремонта при разгерметизации измерительной системы.

Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво – или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры.

2. Термоэлектрические термометры

Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от -200 до +2500 0C и выше. Данный тип устройств характеризует высокая точность и надежность, возможность использования в системах автоматического контроля и регулирования параметра, в значительной мере определяющего ход технологического процесса в металлургических агрегатах.

Сущность термоэлектрического метода заключается в возникновении ЭДС в проводнике, концы которого имеют различную температуру. Для того, чтобы измерить возникшую ЭДС, ее сравнивают с ЭДС другого проводника, образующего с первым термоэлектрическую пару AB, в цепи которой потечет ток.

Термо-ЭДС данной пары зависит только от температуры t1 и t2 и не зависит от размеров термоэлектродов (длины, диаметра), величин теплопроводности и удельного электросопротивления.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, свободные при известной и постоянной температуре t1.

Устройство термоэлектрических термометров

Термоэлектрический термометр (ТТ) – это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в специальной защитной арматуре, обеспечивающий защиту термоэлектродов от механических повреждений и воздействия измеряемой среды. Арматура включает защитный чехол, и головку, внутри которой расположено контактное устройство с зажимами для соединения термоэлектродов с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от защитной арматуры керамическими трубками.

В качестве термоэлектродов используется проволока диаметром 0.5 мм (благородные металлы) и до 3 мм (неблагородные металлы). Спай на рабочем конце термопары образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар.

Стандартные и нестандартные термоэлектрические термометры

Для измерения в металлургии наиболее широко применяются ТТ со стандартной градуировкой: платинородий-платиновые (ТПП), платинородий- платинородиевые (ТПР), хромель-алюмелевые (ТХА), хромель-капелевые (ТХК), вольфрамрений-вольфрамрениевые (ТВР). В ряде случаев используют также ТТ с нестандартной градуировкой: медь-константановые, вольфрам-молибденовые (ТВР) и др.

В условиях длительной эксплуатации при высоких температурах и агрессивном воздействии сред появляется нестабильность градуировочной характеристики, которая является следствием ряда причин: загрязнения материалов термоэлектродов примесями из защитных чехлов, керамических изоляторов и атмосферы печи; испарения одного из компонентов сплава; взаимной диффузии через спай. Величина отклонения может быть значительной и резко увеличивается с ростом температуры и длительностью эксплуатации. Указанные обстоятельства необходимо учитывать при оценке точности измерения температуры в производственных условиях.

Поверка технических ТТ

Поверка ТТ сводится к определению температурной зависимости термо-ЭДС и сравнению полученной градуировки со стандартными значениями.

Градуировка производится двумя методами: по постоянным точкам или сличениям.

Градуировка по постоянным (реперным) точкам является наиболее точной и применяется для образцовых термопар. Поверяемую термопару помещают в тигель с металлом высокой чистоты, установленной в печи, и регистрируют площадку на кривой изменения термо-ЭДС по мере повышения или понижения температуры металла. Данная площадка соответствует температуре плавления или кристаллизации металла, причем более предпочтительно вести градуировку по точке кристаллизации. В качестве реперных металлов используют золото, палладий, платину и др.

Методом сличения проводится градуировка образцовых термопар второго разряда и технических ТТ. Он заключается в непосредственном измерении термо- ЭДС градуируемой термопары при постоянной температуре свободных концов t0=0 0C и различных температурах t2 рабочего спая, причем последняя определяется с помощью образцового термометра. Измерения термо- ЭДС производят с помощью переносного потенциометра с точностью измерения (отсчета) не хуже 0.1 мВ. Отсчет проводится после 10 минут выдержки при данной температуре.

Измерение термо-ЭДС компенсационным путем

Измерение термо-ЭДС термопары прямым путем, по силе тока в цепи постоянного сопротивления, с помощью милливольтметра, можно осуществить сравнительно просто. Однако этот метод обладает рядом недостатков, создающих дополнительные погрешности, что в большинстве случаев не позволяет получить высокой точности измерения.

В измерительной технике кроме прямых методов измерения известны компенсационные метода или методы противопоставления (сравнения) неизвестной величины величине известной. Компенсационные методы позволяют провести измерения более точно, хотя и не всегда так просто, как прямое измерение.

Основное преимущество компенсационного измерения термо-ЭДС, по сравнению с прямым, с помощью милливольтметра, состоит в том, что в момент измерения ток в цепи термопары равен 0. Это означает, что величина сопротивления внешней цепи не имеет значения: никакой подгонки сопротивления внешней цепи делать не надо и беспокоиться о влиянии температуры окружающей среды на внешнюю цепь нет необходимости.

Автоматические потенциометры

Автоматические потенциометры служат для компенсационных измерений термо-ЭДС без ручных манипуляций, свойственных неавтоматическим потенциометрам. У последних ручные манипуляции после стандартизации тока сводятся к следующей необходимости перемещать движок реохорда до тех пор, пока стрелка гальванометра не встанет на ноль. При этом перемещение движка производится во вполне определенном направлении.

Измерительная схема автоматического потенциометра в принципе не отличается от схемы не автоматического потенциометра.

Схема имеет три источника напряжения (батарея Б, нормальный элемент НЭ и термопару Т) и три цепи. Цепь батареи выполнена в виде моста: в диагональ BD включается питание, а в диагональ CA - цепь термопары. Цепь нормального элемента подключается к плечу CD компенсационной цепи. С помощью переключателя П в цепь термопары или в цепь нормального элемента включается электронный усилитель ЭУ (в том числе и вибрационный преобразователь). При включении цепи нормального элемента вводится шунтирующее сопротивление R1, параллельное электронному усилителю, так как в этом случае величина напряжения небаланса бывает много больше, чем при включении цепи термопары.

Электронные автоматические потенциометры называют иногда приборами с непрерывной балансировкой, так как измерение небаланса производится здесь с частотой переменного тока 50 Гц.

3. Электрические термометры сопротивления

В металлургической практике для измерения температур до 6500С применяются термометры сопротивления (ТС), принцип действия которых основан на использовании зависимости электрического сопротивления вещества от температуры. Зная данную зависимость, по изменению величины сопротивления термометра судят о температуре среды, в которую он погружен. Выходным параметром устройства является электрическая величина, которая может быть измерена с весьма высокой точностью (до 0.020С), передана на большие расстояния и непосредственно использована в системах автоматического контроля и регулирования.

В качестве материалов для изготовления чувствительных элементов ТС используются чистые металлы: платина, медь, никель, железо и полупроводники.

Вид функции R = f(t) зависит от природы материала и может быть записан как линейное уравнение R = R0(1 + at), где a – температурный коэффициент сопротивления, t – температура.

Сопротивление полупроводников с увеличением температуры резко уменьшается, т. е. они имеют отрицательный температурный коэффициент сопротивления практически на порядок больше, чем у металлов. Полупроводниковые термометры сопротивления (ТСПП) в основном применяются для измерения низких температур.

Достоинствами ТСПП являются небольшие габариты, малая инерционность, высокий коэффициент. Однако они имеют и существенные недостатки:

1) нелинейный характер зависимости сопротивления от температуры;

2) отсутствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных ТС данного типа. Это приводит к выпуску ТСПП с индивидуальной градуировкой.

Типы и конструкции ТС

Для решения различных задач ТС делятся на эталонные, образцовые и рабочие, которые в свою очередь подразделяются на лабораторные и технические.

Технические ТС в зависимости от назначения и конструкции делятся на: погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2- го и 3-го классов точности и т. д. Термометр состоит из чувствительного элемента, расположенного в защитном стальном чехле, на котором приварен штуцер. Провода, армированные фарфоровыми бусами, соединяют выводы чувствительного элемента с клеммной колодкой, находящейся в корпусе головки. Сверху головка закрыта крышкой, снизу имеется сальниковый ввод, через который осуществляется подвод монтажного кабеля. При измерении температуры сред с высоким давлением на чехол ТС устанавливается специальная защитная (монтажная) гильза.

Чувствительный элемент ТС выполнен из металлической тонкой проволоки с безиндукционной каркасной или бескаркасной намоткой. Значительно реже в металлургической практике встречаются полупроводниковые термометры сопротивления (ТСПП) для измерения температуры от -90 до +180 0С. Их применяют в термореле, низкотемпературных регуляторах, обеспечивающих высокоточную стабилизацию чувствительных элементов газоанализаторов, хроматографов, корпусов пирометров, электродов термоэлектрических установок для экспресс-анализа состава металла и т. п.

studopedia.ru

Что такое температура?

Что такое температура? (определение и пояснение если можно)

Sapienti sat

От лат. Temperatura - нормальное состояние
Температура - физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы.
Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

Булат 1

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. (http://ru.wikipedia.org/wiki/Температура ).
По сути, температура - мера кинетической энергии молекул.
Ek = 3/2 * k*T, где Ek - средняя кинетическая энергия молекул, k - постоянная Больцмана = 1,38 * 10^-23 Дж/К, T - температура (в градусах Кельвина) .
http://ru.wikipedia.org/wiki/Постоянная_Больцмана
В более общем термодинамическом определении: температура — величина, обратная изменению энтропии (степени беспорядка) системы при добавлении в систему единичного количества теплоты: 1/T = ΔS/ΔQ.

Val

это скорость движения молекул и ещё с условием того, что оно может быть обнаружено в диапазоне инфро красного спектра излучения электромагнитной волны.
Поэтому температура на высоте 1000 км от Земли имеет тысчи градусов цельсия, но там это - не ощущается из-за разряжонности атмосферы.

Dims

Это энергия хаотического микроскопического движения, приходящаяся на одну степень свободы.
Суть в том, что хаотическое движение со временем распространяется на все "степени свободы", то есть, на все возможные способы движения. Например, если молекула может двигаться в трёх направлениях и вертеться в трёх направлениях, то со временем энергия равномерно распределится на все шесть движений.
Если молекула может ещё и колебаться как пружинка, то энергия проникнет и в это движение. Если молекула может излучать фотоны, то хаос проникнет и туда -- молекула станет хаотически испускать фотоны.
В конечном итоге, когда всё устаканивается, все возможные формы движения оказываются задействованы одинаково -- это называется "термодинамическое равновесие". Вот в этом состоянии, сколько энергии приходится на одну степень (а на каждую приходится одно и то же количество энергии) и называется "температурой". Только, чтобы перевести из джоулей в градусы, нужно ещё поделить на постоянную Больцмана.
Если два вещества, молекулы которых имеют разное количество степеней свободы, снабдить одинаковым количеством энергии, то то вещество, у которого степеней свободы больше, будет более холодным. Тепло перетекает от более горячего к более холодному, поэтому, там, где больше степеней свободы, туда направляется и энергия.

Анатолий хапилин

Это условная мера для определения степени возбуждения плазмы-акаши вокруг планеты, которая в свою очередь движет молекулы структур в месте ее возбуждения. Например, огонь, как элемент эфирной материи, более энергетичен, чем физические элементы, а следовательно, он возбуждает локально плазму, пронизывающую все и вся, а так же пространство в структуре, которая, к примеру, должна сгореть, и та начинает разрушать электронные связи структуры. Чем слабее последние, тем быстрее данная структура разрушится. И чем выше степень возбуждения плазмы при горении, например, газа, тем она энергетичнее. Подробнее - в источнике.

Евгений дюбайло

Температура - физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.
проще говоря-температура-мера измерения энергии

Читайте также