Частота определение

Частота

У этого термина существуют и другие значения, см. Частота (значения). Размерность Единицы измерения СИ
Частота
ν = n t {\displaystyle \nu ={\frac {n}{t}}}

T−1

Гц

Частота́ — физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени. Рассчитывается, как отношение количества повторений или возникновения событий (процессов) к промежутку времени, за которое они совершены[1]. Стандартные обозначения в формулах — ν, f или F.

Единицей измерения частоты в Международной системе единиц (СИ) является герц (русское обозначение: Гц; международное: Hz), названный в честь немецкого физика Генриха Герца.

Частота обратно пропорциональна периоду колебаний: ν = 1/T.

Частота Период
1 мГц (10−3 Гц) 1 Гц (100 Гц) 1 кГц (103 Гц) 1 МГц (106 Гц) 1 ГГц (109 Гц) 1 ТГц (1012 Гц)
1 кс (103 с) 1 с (100 с) 1 мс (10−3 с) 1 мкс (10−6 с) 1 нс (10−9 с) 1 пс (10−12 с)

Частота, как и время, является одной из наиболее точно измеряемых физических величин: до относительной точности 10−17[2].

В природе известны периодические процессы с частотами от ~10−16 Гц (частота обращения Солнца вокруг центра Галактики) до ~1035 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

В квантовой механике частота колебаний волновой функции квантовомеханического состояния имеет физический смысл энергии этого состояния, в связи с чем система единиц часто выбирается таким образом, что частота и энергия выражаются в одних и тех же единицах (иными словами, переводный коэффициент между частотой и энергией — постоянная Планка в формуле E = hν — выбирается равным 1).

Глаз человека чувствителен к электромагнитным волнам с частотами от 4·1014 до 8·1014 Гц (видимый свет); частота колебаний определяет цвет наблюдаемого света. Слуховой анализатор человека воспринимает акустические волны с частотами от 20 Гц до 20 кГц. У различных животных частотные диапазоны чувствительности к оптическим и акустическим колебаниям различны.

Отношения частот звуковых колебаний выражаются с помощью музыкальных интервалов, таких как октава, квинта, терция и т. п. Интервал в одну октаву между частотами звуков означает, что эти частоты отличаются в 2 раза, интервал в чистую квинту означает отношение частот 3⁄2. Кроме того, для описания частотных интервалов используется декада — интервал между частотами, отличающимися в 10 раз. Так, диапазон звуковой чувствительности человека составляет 3 декады (20 Гц — 20 000 Гц). Для измерения отношения очень близких звуковых частот используются такие единицы, как цент (отношение частот, равное 21/1200) и миллиоктава (отношение частот 21/1000).

Мгновенная частота и частоты спектральных составляющих

Периодический сигнал характеризуется мгновенной частотой, являющейся (с точностью до коэффициента) скоростью изменения фазы, но тот же сигнал можно представить в виде суммы гармонических спектральных составляющих, имеющих свои (постоянные) частоты. Свойства мгновенной частоты и частоты́ спектральной составляющей различны[3].

Синусоидальные волны различных частот, нижние волны имеют более высокие частоты, чем верхние. Горизонтальная ось представляет время Изменение частоты

Циклическая частота

Основная статья: Угловая частота

В теории электромагнетизма, теоретической физике, а также в некоторых прикладных электрорадиотехнических расчётах удобно использовать дополнительную величину — циклическую (круговую, радиальную, угловую) частоту (обычно обозначается ω). Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота) — скалярная физическая величина. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В системах СИ и СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны). Угловая частота в радианах в секунду выражается через частоту ν (выражаемую в оборотах в секунду или колебаниях в секунду), как ω = 2πν[4].

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей: ω = 360°ν.

Численно циклическая частота равна числу циклов (колебаний, оборотов) за 2π секунд. Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота ν L C = 1 / ( 2 π L C ) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).} В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость.

Частота дискретных событий

Частота дискретных событий (частота импульсов) — физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий — секунда в минус первой степени (русское обозначение: с−1; международное: s−1). Частота 1 с−1 равна такой частоте дискретных событий, при которой за время 1 с происходит одно событие[5][6].

Частота вращения

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения — секунда в минус первой степени (с−1, s−1), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

  • Ширина полосы частот — ν m a x − ν m i n {\displaystyle \nu _{max}-\nu _{min}}
  • Частотный интервал — log ⁡ ( ν m a x / ν m i n ) {\displaystyle \log(\nu _{max}/\nu _{min})}
  • Девиация частоты — Δ ν / 2 {\displaystyle \Delta \nu /2}
  • Период — 1 / ν {\displaystyle 1/\nu }
  • Длина волны — v / ν {\displaystyle {v}/\nu }
  • Угловая скорость (скорость вращения) — d ϕ / d t ; 2 π F B P . {\displaystyle d\phi /dt;2\pi F_{BP.}}

Единицы измерения

В системе СИ единицей измерения является герц. Единица была первоначально введена в 1930 году Международной электротехнической комиссией[7], а в 1960 году принята для общего употребления 11-й Генеральной конференцией по мерам и весам, как единица СИ. До этого в качестве единицы частоты использовался цикл в секунду (1 цикл в секунду = 1 Гц) и производные (килоцикл в секунду, мегацикл в секунду, киломегацикл в секунду, равные соответственно килогерцу, мегагерцу и гигагерцу).

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра. Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность), синтезаторы частот, генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 — находится во ВНИИФТРИ.
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 — находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени. Полученное количество разделяется на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

ν = 71 15 s ≈ 4.7 Hz {\displaystyle \nu ={\frac {71}{15\,{\mbox{s}}}}\approx 4.7\,{\mbox{Hz}}}

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени[8]. Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 Tm), или же относительной погрешности Δν/ν = 1/(2vTm), где Tm — временной интервал, а ν — измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетов N мало.

Методы измерения

Стробоскопический метод

Использование специального прибора — стробоскопа — является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x) не равна частоте строба (y), но пропорциональна ей с целочисленным коэффициентом (2x, 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Биения.

Близким к стробоскопическому методу является метод биений. Он основан на том, что при смешивании колебаний двух частот (опорной ν и измеряемой ν'1) в нелинейной цепи в спектре колебаний появляется также разностная частота Δν = |ν ν'1|, называемая частотой биений (при линейном сложении колебаний эта частота является частотой огибающей суммарного колебания). Метод применим, когда более предпочтительным является измерение низкочастотных колебаний с частотой Δf. В радиотехнике этот метод также известен под названием гетеродинного метода измерения частоты. В частности, метод биений используется для точной настройки музыкальных инструментов. В этом случае звуковые колебания фиксированной частоты (например, от камертона), прослушиваемые одновременно со звуком настраиваемого инструмента, создают периодическое усиление и ослабление суммарного звучания. При точной настройке инструмента частота этих биений стремится к нулю.

Применение частотомера

Высокие частоты обычно измеряются при помощи частотомера. Это электронный прибор, который оценивает частоту определенного повторяющегося сигнала и отображает результат на цифровом дисплее или аналоговом индикаторе. Дискретные логические элементы цифрового частотомера позволяют учитывать количество периодов колебаний сигнала в пределах заданного промежутка времени, отсчитываемого по эталонным кварцевым часам. Периодические процессы, которые не являются по своей природе электрическими (такие, к примеру, как вращение оси, механические вибрации или звуковые волны), могут быть переведены в периодический электрический сигнал при помощи измерительного преобразователя и в таком виде поданы на вход частотомера. В настоящее время приборы этого типа способны охватывать диапазон вплоть до 100 ГГц; этот показатель представляет собой практический потолок для методов прямого подсчёта. Более высокие частоты измеряются уже непрямыми методами.

Непрямые методы измерения

Вне пределов диапазона, доступного частотомерам, частоты электромагнитных сигналов нередко оцениваются опосредованно, с помощью гетеродинов (то есть частотных преобразователей). Опорный сигнал заранее известной частоты объединяется в нелинейном смесителе (таком, к примеру, как диод) с сигналом, частоту которого необходимо установить; в результате формируется гетеродинный сигнал, или — альтернативно — биения, порождаемые частотными различиями двух исходных сигналов. Если последние достаточно близки друг к другу по своим частотным характеристикам, то гетеродинный сигнал оказывается достаточно мал, чтобы его можно было измерить тем же частотомером. Соответственно, в результате этого процесса оценивается лишь отличие неизвестной частоты от опорной, каковую следует определять уже иными методами. Для охвата ещё более высоких частот могут быть задействованы несколько стадий смешивания. В настоящее время ведутся исследования, нацеленные на расширение этого метода в направлении инфракрасных и видимо-световых частот (т. н. оптическое гетеродинное детектирование).

Примеры

Электромагнитное излучение

Основная статья: Электромагнитный спектр Основная статья: Частотные интервалы Полный спектр электромагнитного излучения с выделенной видимой частью

Видимый свет представляет собой электромагнитные волны, состоящие из осциллирующих электрических и магнитных полей, перемещающихся в пространстве. Частота волны определяет её цвет: 4×1014 Гц — красный цвет, 8×1014 Гц — фиолетовый цвет; между ними в диапазоне (4...8)×1014 Гц лежат все остальные цвета радуги. Электромагнитные волны, имеющие частоту менее 4×1014 Гц, невидимы для человеческого глаза, такие волны называются инфракрасным (ИК) излучением. Ниже по спектру лежит микроволновое излучение и радиоволны. Свет с частотой выше, чем 8×1014 Гц, также невидим для человеческого глаза; такие электромагнитные волны называются ультрафиолетовым (УФ) излучением. При увеличении частоты электромагнитная волна переходит в область спектра, где расположено рентгеновское излучение, а при ещё более высоких частотах — в область гамма-излучения.

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света.

Другой характеристикой электромагнитных волн является длина волны. Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

λ = c / ν , {\displaystyle \lambda =c/\nu ,}

где с — скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c′ отличается от скорости света в вакууме (c′ = c/n, где n — показатель преломления), связь между длиной волны и частотой будет следующей:

λ = c n ν . {\displaystyle \lambda ={\frac {c}{n\nu }}.}

Ещё одна часто использующаяся характеристика волны — волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ. Иногда эта величина используется с коэффициентом 2π, по аналогии с обычной и круговой частотой ks = 2π/λ. В случае электромагнитной волны в среде

k = 1 / λ = n ν c . {\displaystyle k=1/\lambda ={\frac {n\nu }{c}}.} k s = 2 π / λ = 2 π n ν c = n ω c . {\displaystyle k_{s}=2\pi /\lambda ={\frac {2\pi n\nu }{c}}={\frac {n\omega }{c}}.}

Звук

Основная статья: Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц до 20 кГц (с возрастом верхняя граница частоты слышимого звука снижается). Звук с частотой более низкой, чем 20 Гц (соответствует ноте ми субконтроктавы), называется инфразвуком[9]. Инфразвуковые колебания, хотя и не слышны, могут ощущаться осязательно. Звук с частотой выше 20 кГц называется ультразвуком, а с частотой выше 1 ГГц — гиперзвуком.

В музыке обычно используются звуки, высота (основная частота) которых лежит от субконтроктавы до 5-й октавы. Так, звуки стандартной 88-клавишной клавиатуры фортепиано укладываются в диапазон от ноты ля субконтроктавы (27,5 Гц) до ноты до 5-й октавы (4186,0 Гц). Однако музыкальный звук обычно состоит не только из чистого звука основной частоты, но и из примешанных к нему обертонов, или гармоник (звуков с частотами, кратными основной частоте); относительная амплитуда гармоник определяет тембр звука. Обертоны музыкальных звуков лежат во всём доступном для слуха диапазоне частот.

Частота переменного тока

Напряжение и частота:      220-240 В/60 Гц      220-240 В/50 Гц      100-127 В/60 Гц      100-127 В/50 Гц Рабочее место бортрадиста самолёта Ан-26. В верхнем правом углу виден частотомер на 400 Гц

В Европе (в том числе в России и всех странах бывшего СССР), большей части Азии, Океании (кроме Микронезии), Африке и в части Южной Америки промышленная частота переменного тока в силовой сети составляет 50 Гц. В Северной Америке (США, Канада, Мексика), Центральной и в некоторых странах северной части Южной Америки (Бразилия, Венесуэла, Колумбия, Перу), а также в некоторых странах Азии (в юго-западной части Японии, в Южной Корее, Саудовской Аравии, на Филиппинах и на Тайване) используется частота 60 Гц. См. Стандарты разъёмов, напряжений и частот электросети в разных странах. Почти все бытовые электроприборы одинаково хорошо работают в сетях с частотой 50 и 60 Гц при условии одинакового напряжения сети. В конце XIX — первой половине XX века, до стандартизации, в различных изолированных сетях использовались частоты от 162⁄3 до 1331⁄3 Гц. Первая до сих пор используется на некоторых железнодорожных линиях мира напряжением 15 кВ, где была принята для использования электровозов без выпрямителей — тяговые двигатели постоянного тока питались напрямую от трансформатора.

В бортовых сетях самолётов, подводных лодок и т. д. используется частота 400 Гц. Более высокая частота силовой сети позволяет уменьшить массу и габариты трансформаторов и получить высокие частоты вращения асинхронных двигателей, хотя увеличивает потери при передаче на большие расстояния — из-за ёмкостных потерь, роста индуктивного сопротивления линии и потерь на излучение.

ru.wikipedia.org

ЧАСТОТА это:

ЧАСТОТА ЧАСТОТА, показатель, выражающий собой число повторений или возникновения событий (процессов). В статистике частота - это цифра, показывающая, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины. В физике - количество колебаний (или волн), наблюдающихся в определенной точке в течение секунды (измеряется в ГЕРЦАХ), в том числе, волны звука, света и радиоволны, раскачивания МАЯТНИКА и колебания пружин. Произведение частоты и длины волны - величина постоянная и равна скорости волны.

Научно-технический энциклопедический словарь.

dic.academic.ru

Частота вращения это:

Частота вращения Угловая скорость (синяя стрелка) в одну единицу по часовой стрелке Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки

Углова́я ско́рость — векторная величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:

\omega_z=\frac{d\phi}{dt},

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС) — радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, — физически безразмерен, поэтому физическая размерность угловой скорости — просто [1/секунда]). В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту — это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью \vec \omega определяется формулой:

 \vec v = [\ \vec \omega, \vec r\ ],

где \vec r — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

  • В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути — если плоскость вращения заведомо известна — может быть заменена скаляром — проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.
  • Производная угловой скорости по времени есть угловое ускорение.
  • Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю).
  • Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчета, однако в разных инерциальных системах отсчета может различаться ось или центр вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).
  • В случае движения одной единственной точки в трехмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:
 \vec\omega = \frac{\vec r \times \vec v}{(\vec r,\vec r )} , где \vec r — радиус-вектор точки (из начала координат), \vec v — скорость этой точки. \vec r \times \vec v — векторное произведение, (\vec r,\vec r ) — скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы \vec \omega, подходящие по определению, по другому — произвольно — выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) — эта формула не верна для угловой скорости всего тела (так как дает разные \vec \omega для каждой точки, а при вращении абсолютно твёрдого тела по определению угловая скорость его вращения — единственный вектор). При всём при этом, в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.
  • В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.
  • При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеренной в герцах (Гц) (то есть в таких единицах ~~\omega = {f}).
  • В случае использования обычной физической единицы угловой скорости — радианов в секунду — модуль угловой скорости связан с частотой вращения так: ~~\omega = {2\pi f}.
  • Наконец, при использовании градусов в секунду связь с частотой вращения будет: ~~\omega = {360 f}.

См. также

  • Угловая частота
  • Угловое ускорение
  • Момент импульса

Wikimedia Foundation. 2010.

dic.academic.ru

/ ОПРЕДЕЛЕНИЕ ЦИКЛИЧЕСКОЙ ЧАСТОТЫ

ОПРЕДЕЛЕНИЕ ЦИКЛИЧЕСКОЙ ЧАСТОТЫКОЛЕБАНИЯ ТЕЛА НА ПРУЖИНЕ

Цель работы: опытная проверка расчета частоты колебания тела на пружине.

Принадлежности: штатив с масштабной линейкой, пружина, чашечка, разновески, секундомер.

Вопросы, знание которых обязательно для допуска к выполнению работы

  1. Какие колебания называются гармоническими? Напишите уравнение гармонических колебаний. Поясните.

  2. Что называется амплитудой, частотой, периодом, фазой и начальной фазой гармонического колебания?

  3. Как связаны между собой период, частота, циклическая частота?

  4. Две колеблющиеся материальные точки имеют одинаковые (разные) фазы. Что это означает?

  5. Под действием каких сил происходит колебание тела на пружине в вертикальном направлении?

  6. Напишите закон Гука.

  7. Что называется коэффициентом жесткости пружины?

  8. От каких параметров пружины зависит коэффициент жесткости?

  9. Как выражаются скорость и ускорение при гармоническом колебании?

  10. Что называется квазиупругой силой? Приведите примеры.

  11. От чего и как зависит частота колебания тела на пружине?

  12. Расскажите порядок выполнения работы.

ВВЕДЕНИЕ

Тело, подвешенное на пружине и выведенное из положения равновесия, совершает гармонические колебания.

Гармоническими называются колебания, при которых колеблющаяся величина изменяется со временем по закону синуса и косинуса.

Для механических колебаний это означает, что смещение тела х от положения равновесия происходит по закону:

х = х0×sin (ωt +φ), (1)

где х0- амплитуда (максимальное отклонение от положения равновесия);

ω= 2πν = - циклическая частота (ν - частота колебания; Т - период);

t - время, в течение которого совершается колебательный процесс;

φ - начальная фаза;

(ωt +φ) - фаза колебания, определяющая состояние системы в момент времени t.

Рассмотрим пружинный маятник (рис. 1), состоящий из легкой пружины, имеющей достаточно большое число витков, и тела массой m. Если оттянуть тело маятника строго вертикально вниз на небольшое расстояние и отпустить, то маятник начнет совершать колебания только вдоль вертикальной линии (колебания с одной степенью свободы). Колебание тела на пружине в вертикальном направлении происходит под действием двух сил: силы тяжести и упругой силы пружины. При отклонении маятника из положения равновесия будет возникать внутренняя возвращающая сила упругости, направленная к точке равновесия. Если величина отклонения маятника мала (много меньше первоначальной длины маятника), можно воспользоваться законом Гука:

F = – kx , (2)

где k - коэффициент жесткости пружины, зависящий от ее геометрических размеров и материала, из которого она изготовлена.

По второму закону Ньютона:

F = ma = – kx;

.

Тогда уравнение гармонических колебаний получим в виде:

. (3)

Общее решение этого уравнения имеет вид:

. (4)

Действительно:

, (5)

. (6)

Подставляя в левую часть уравнения (3) выражение (6), а в правую - значение х из (4), приходим к тождеству, что означает правильность выбора решения в виде уравнения (4).

Из уравнений (4) и (1) следует, что циклическая частота колебаний зависит от коэффициента жесткости пружины и массы колеблющегося тела:

. (7)

Значение начальной фазы определяется в каждом конкретном случае из начальных условий.

Обобщая вывод, сделанный выше, можно утверждать, что гармонические колебания будут совершаться и при действии на тело силы любой природы, лишь бы она подчинялась уравнению (2). Силы или результирующие силы, хотя и неупругие, но подчиняющиеся уравнению (2), называются квазиупругими. Примером такой силы является результирующая двух сил (силы тяжести и силы натяжения нити), возникающая при отклонении пружинного маятника из положения равновесия.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для расчета частоты колебаний груза на пружине необходимо изменяя массу груза m определить коэффициент жесткости пружины k. Кроме того, нужно быть уверенным, что коэффициент k будет постоянным в достаточно широком диапазоне нагрузок и деформации пружины.

1. Определим k через приращение силы ΔF и приращение смещения Δx:

k =ΔF/Δx.

Для этого на чашечку, подвешенную к пружине, следует класть гирьки так, чтобы нагрузка увеличивалась каждый раз на 20 г, и, соответственно, производить отсчет xi положений чашечки и пружины.

Р

43

астяжение пружины отмечают с помощью указателя (горизонтального кусочка проволоки, укрепленного в нижней части пружины). Для избежания ошибок из-за параллакса используют зеркальную шкалу. Для правильного отсчета показаний глаз следует расположить на такой высоте, чтобы указатель совпал со своим изображением в зеркале, укрепленном рядом со шкалой. Затем, не изменяя положения головы, производят отсчет по шкале.

По разности xi до и после нагрузки определяют Δx для соответствующей нагрузки: ΔF = Δmg.

Δxi=|xi- xi-1|

Чтобы убедиться, что не произошло неупругих деформаций пружины, необходимо произвести отсчеты и при уменьшающейся нагрузке. Если при разных нагрузках значения коэффициента k в пределах погрешности получаются одинаковыми, то закон Гука выполняется во всем диапазоне нагрузок. В этом случае можно определить среднее значение k.

2. По формуле (7) рассчитать циклическую частоту ω (при расчете обратите внимание на систему единиц). Результаты измерений занесите в таблицу, определите относительную и абсолютную погрешности .

Таблица

п/п

m, кг

xi, м

Δxi, м

k, H/м

, рад/c

¢, рад/c

1

0

2

0.02

3

0.04

4

0.06

5

0.08

6

0.10

7

0.12

8

0.10

9

0.08

10

0.06

11

0.04

12

0.02

13

0

Среднее значение

3. Необходимо экспериментально проверить рассчитанную циклическую частоту ω¢. Для этого с помощью секундомера определяют время t числа N полных колебаний, откуда

Опыт выполняется следующим образом.

На чашечке устанавливают груз m=0,1 кг, для которого по формуле (7) был произведен расчет .

Слегка оттянув чашечку (строго вертикально вниз), приводят груз в колебание.

Измерение времени не рекомендуется начинать с момента запуска. После нескольких качаний, усвоив темп счета, запускают секундомер в момент, когда груз занимает крайнее нижнее положение (либо крайнее верхнее). В момент запуска секундомера начинают счет колебаний с цифры "ноль" (а не "один"). Для одного и того же числа полных колебаний N (N ³ 20) определяют время колебаний t не менее трех раз. При этом не обязательно каждый раз останавливать чашечку с грузом, а затем снова ее запускать.

Расхождение в измеренных промежутках времени не должно сильно превышать погрешность секундомера (Dt = 0.2 с). Кроме того, если обнаружится расхождение во времени t больше, чем t /N , это означает, что при подсчете числа колебаний допущен просчет.

По измеренным t найти tср. Используя tсp и число полных колебаний N, определите Т и ω¢.

6. Сравните результаты для  и ' с учетом их абсолютных погрешностей для m=0,1 кг.

7. Рассчитайте массу чашечки. Поясните, как вы это сделали.

45

Рекомендуемая литература

1. Савельев И.В. Курс общей физики. T. I. - Киев: Наука, 1977. § 14, 49, 50, 53, 54.

2. Архангельский М.В. Курс физики: механика. - М.: Просвеще­ние, 1975. С. 62-72, 224-237, 297-305.

3. Грабовский Р.И. Курс физики. - М.: Высшая школа, 1970. § 10, 27, 29.

4. Ландсберг Г.С. Элементарный учебник физики. T. I. - М.: Наука, 1967. § 58, 59, 60, 61. С. 277-287.

5. Мэрион Дж.Б. Общая физика с биологическими примерами. - М.: Высшая школа, 1986.

6. Кац Ц.Б. Биофизика на уроках физики. - М.: Просвещение, 1988.

Для получения зачета необходимо

1. Продемонстрировать умение экспериментально определять час­тоту колебаний тела на пружине.

2. Представить отчет по установленной форме.

3. Уметь отвечать на вопросы типа:

а

46

) К пружине с жесткостью k подвешено тело массой m. Затем пружина перерезается пополам и к одной из ее половин снова подвешивается то же тело. Будет ли частота колебаний пружины одинакова в первом и во втором случаях? Если нет, то как будут относиться друг к другу обе частоты? Рассмотрите три случая:mпр >> m , mпр пр @ m.

б) Поясните, как можно сравнить между собой массы тел, измеряя частоты колебаний этих масс, подвешенных к пружине.

в) Поясните качественно, как изменится период колебаний пружины, если учесть ее массу m?

г) Железная и медная проволоки одинаковых размеров висят в вертикальной плоскости. Нижние концы проволок прикреплены к горизонтальному стержню. Сохранится ли горизонтальность стержня, если к его середине прикрепить груз?

д) Что такое колебание? Какие колебательные движения вы знаете? При каких условиях возникают гармонические колебания?

е) Во сколько раз изменится частота колебаний автомобиля на рессорах после принятия груза, равного массе порожнего автомобиля?

ж

48

) В ряде измерительных приборов имеются успокоители - демпферы, которые служат для ускорения затухания колебаний подвижной части прибора, например стрелки.

На рис. 2 приведены кривые зависимости измерения амплитуды от времени движения стрелки измерительного прибора.

Укажите:

а) кривую, соответствующую периодическому колебанию стрелки без успокоителя;

б

47

) кривую, характеризующую затухающие колебания;

в) кривую апериодического движения при сильном успокоении.

Рис. 2

з

Рис. 3

) Чем отличаются колебательные движения, графики которых представлены на рис. 3? Рассчитайте параметры колебательного процесса (задания возьмите у преподавателя).

StudFiles.ru

Что такое частота

Василий.

Ссылка

Частота — число периодов за одну секунду. Измеряется в герцах (Гц) или циклах в секунду. Звуковой сигнал частотой 1000 Гц (1 кГц) означает 1000 периодов синусоидального сигнала в секунду.



Чaстота́ — физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени.
Единицей частоты в Международной системе единиц (СИ) в общем случае является Герц (Гц, Hz).
Величина, обратная частоте, называется периодом.
Измерения
Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра.
Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность) , синтезаторы частот, генераторы сигналов и др.
Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Nikolя ®

ЧАСТОТА, это число повторений одинаковых движений, колебаний в какую-л. единицу времени.
В статистике частота - это цифра, показывающая, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.
В физике - количество колебаний (или волн) , наблюдающихся в определенной точке в течение секунды (измеряется в ГЕРЦАХ) , в том числе, волны звука, света и радиоволны, раскачивания МАЯТНИКА и колебания пружин. Произведение частоты и длины волны - величина постоянная и равна скорости волны.

Читайте также