Методы определения основного обмена

Методы определения основного обмена.

Расчет основного обмена по таблицам.Специальные таблицы дают воз­можность по росту, возрасту и массе тела определить средний уровень ос­новного обмена человека. При сопоставлении этих величин с результатами, полученными при исследовании рабочего обмена с помощью приборов, можно вычислить разницу, эквивалентную затратам энергии для выполне­ния работы.

Вычисление основного обмена по гемодинамическим показателям (фор­мула Рида).Расчет основан на взаимосвязи между артериальным давлени­ем, частотой пульса и теплопродукцией организма. Формула дает возмож­ность вычислить процент отклонения величины основного обмена от нормы. Допустимым считается отклонение ±10 %.

ПО = 0,75 • (ЧСС + ПД • 0,74) - 72,

где ПО — процент отклонений; ЧСС — частота сердечных сокращений

(пульс); ПД — пульсовое давление.

Для определения соответствия основного обмена нормативным дан­ным по гемодинамическим показателям существуют специальные номо­граммы.

Расход энергии в состоянии покоя различными тканями организма не­одинаков. Более активно расходуют энергию внутренние органы, менее ак­тивно — мышечная ткань. Интенсивность основного обмена в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Люди с низкой массой тела производят больше тепла на 1 кг массы тела, чем с вы­сокой. Если рассчитать энегoвыделение на 1 м2 поверхности тела, то эта разница почти исчезает. Согласно еще одному правилу Рубнера, основной обмен приблизительно пропорционален поверхности тела для разных видов животных и человека.

Отмечены сезонные колебания величины основного обмена — повыше­ние его весной и снижение зимой. На величину основного обмена влияют предшествующая мышечная работа, состояние желез внутренней секреции.

studopedia.ru

/ экзамен.вопросы физа

#45 Уметь давать оценку состояния сосудов по результатам измерения скорости пульсовой волны. Объясните непрерывность движения крови по сосудам.

Артериальный пульс, его происхождение и характеристика.

В артериях периодически возникают колебания их стенок, называемые артериальным пульсом. Определяются следующие свойства пульса: ритм, частота, напряжение, наполнение, величина и форма.

Ритм. У здорового человека сокращение сердца и пульсовые волны следуют друг за другом через равные промежутки времени, то есть пульс ритмичен.

При расстройствах сердечного ритма пульсовые волны следуют через неодинаковые промежутки времени и пульс становится неритмичным.

Частота. Частота пульса в нормальных условиях соответствует частоте сердечных сокращений и равна 60-80 сокр/мин. При тахикардии увеличивается число пульсовых волн в минуту, появляется частый пульс; при брадикардии пульс становится редким.

Напряжение. Напряжение пульса определяется той силой, которую нужно приложить исследующему для полного сдавления пульсирующей артерии. Это свойство пульса зависит от величины систолического артериального давления. Чем выше давление, тем труднее сжать артерию, - такой пульс называется напряженным, или твердым. При низком давлении артерия сжимается легко - пульс мягкий.

Наполнение. Наполнение пульса отражает наполнение исследуемой артерии кровью, обусловленное в свою очередь тем количеством крови, которое выбрасывается в систолу в артериальную систему и вызывает колебание объема артерии. Оно зависит от величины ударного объема, от общего количества крови в организме и ее распределения.

Величина. Величина пульса, то есть величина пульсового толчка, - понятие, объединяющее такие его свойства, как наполнение и напряжение. Она зависит от степени расширения артерии во время систолы и от ее спадения в момент диастолы. Это в свою очередь зависит от наполнения пульса, величины колебания артериального давления в систолу и диастолу и способности артериальной стенки к эластическому расширению.

Форма. Форма пульса зависит от скорости изменения давления в артериальной системе в течение систолы и диастолы.

Анализ сфигмограммы.

Запись артериального пульса называетсясфигмографией. На сфигмограмме различают анакроту, катакроту, инцизуру и дикротический подъем, природа которых связана с волнами первого порядка, т.е. с изменением давления крови в аорте при выбросе крови из сердца. Стенка аорты при этом несколько растягивается, а затем возвращается к исходному размеру вследствие своей эластичности. Механическое колебание стенки аорты, называемоепульсовой волной, передается далее на артерии, артериолы и здесь, не доходя до капилляров, затухает.

Скорость распространения пульсовой волны.

Скорость распространения пульсовой волны выше скорости течения крови, в среднем она равна 10 м/с. Поэтому пульсовая волна достигает лучевой артерии в области запястья (наиболее часто используемое место регистрации пульса) примерно за 100 мс при расстоянии от сердца до запястья 1 м. Следовательно, при синхронной регистрации пульса лучевой артерии и процессов в сердце пульсовые колебания будут запаздывать на 100 мс.

Если колебания давления, распространяясь от сердца к периферии, постепенно затухают, то амплитуда каждой фазы пульса в периферических артериях увеличивается. В артериолах пульс затухает окончательно и отсутствует в капиллярах, венулах, мелких и средних венах. В крупных венах появляется венный пульс.

Факторы, обеспечивающие непрерывное движение крови по сосудам.

  • остаточная сила работы сердца;

  • присасывающая сила сердца во время диастолы;

  • присасывающая сила грудной клетки в фазу вдоха;

  • капиллярные силы поверхностного натяжения;

  • наличие в венах клапанов; активность скелетных мышц.

#46 Объясните физиологическое значение температуры тела чел-ка, температурная схема, виды термометрии. Объясните мех-мы теплопродукции и ее регуляции.

Гомойотермия. Температура внутренних органов у них колеблется в пределах 36—38 °С, способствуя оптимальному течению метаболических процессов, катализируя большинство ферментативных реакций и влияя в определенных границах на их скорость.

Постоянная температура необходима и для поддержания нормальных физико-химических показателей — вязкости крови, ее поверхностного натяжения, коллоидно-осмотического давления и др. Температура влияет и на процессы возбуждения, скорость и интенсивность сокращения мышц, процессы секреции, всасывания и защитные реакции клеток и тканей.

Оптимальная температура тела у человека составляет 37 °С; верхняя летальная температура — 43,4 °С. При более высокой температуре начинается внутриклеточная денатурация белка и необратимая гибель; нижняя летальная температура составляет 24 °С.

Температурная схема тела, которая определяется различным уровнем обмена веществ в разных органах. Температура тела в подмышечной впадине — 36,8 °С, на ладонных поверхностях руки — 25—34 °С, в прямой кишке — 37,2—37,5 °С, в ротовой полости — 36,9 °С. Самая низкая температура отмечается в пальцах нижних конечностей, а самая высокая — в печени.

Вместе с тем даже в одном и том же органе существуют значительные температурные градиенты, а ее колебания составляют от 0,2 до 1,2 °С. Так, в печени температура равна 37,8—38 °С, а в мозге — 36,9—37,8 °С. Значительные температурные колебания наблюдаются при мышечной нагрузке. У человека интенсивная мышечная работа приводит к повышению температуры сокращающихся мышц — на 7 °С.

При купании человека в холодной воде температура стопы падает до 16 °С без каких-либо неприятных ощущений.

Индивидуальные особенности температурной схемы тела:

• здоровый человек имеет относительно постоянную температурную схему тела;

• особенности температурной схемы генетически детерминированы, в первую очередь индивидуальной интенсивностью метаболических процессов;

• индивидуальные особенности температурной схемы тела определяются влияниями гуморальных (гормональных) факторов и тонусом вегетативной нервной системы;

• температурная схема тела совершенствуется в процессе воспитания, определяется образом жизни и особенно закаливанием. Вместе с тем она динамична в известных пределах, зависит от особенностей профессии, экологических условий, характера и других факторов.

Центры теплообразования. В области латерально-дорсального гипоталамуса обнаружены центры теплообразования.

1. генетически детерминированные особенности субъекта, рост, масса тела, общая величина поверхности тела, активность эндокринной системы

2. характер питания

3. интенсивность мышечной работы:более интенсивная мышечная работа увеличивает теплопродукцию (мышечная дрожь)

4. окружающая температура

5. психоэмоциональное состояние

6. кислородное обеспечение (недостаток кислорода увеличивает теплопродукцию)

Регуляция теплообразования.

При понижении температуры за счет возбуждения холодовых рецепторов охлажденной кровью на нейроны центров теплопродукции заднего гипоталамуса происходит активация периферических механзмов теплопродукции и торможение теплоотдачи.

Локальная регуляция. На холоде артериолы сужаются, раскрываются артериовенозные анастомозы, снижается теплоотдача, прохладная венозная кровь захватывает часть тепла – противоточный теплообменник.

Гуморальная регуляция. Адреналин, гормоны щитовидной железы, соматотропный горм. усиливают окислительные процессы в тканях, сужают сосуды.

#47 Объясните физиологическое значение температуры тела, температурная схема, виды термометрии. Охарактеризуйте виды теплоотдачи, объяснить мех-мы ее регуляции.

Центры теплоотдачи. В области передних ядер гипоталамуса обнаружены центры теплоотдачи. Разрушение этих структур приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях высокой температуры окружающей среды. Температура их тела при этом начинает возрастать, животные переходят в состояние гипертермии, причем гипертермия может развиться даже при комнатной температуре. Раздражение этих структур через вживленные электроды электрическим током вызывает у животных характерный синдром: одышку, расширение поверхностных сосудов кожи, падение температуры тела. Вызванная предварительным охлаждением мышечная дрожь у них прекращается.

Теплоотдачу(физическую терморегуляцию) определяют физические процессы:

- перемещение теплого воздуха с поверхности тела путем контактной или дистантной конвекции;

- теплоизлучение (радиация);

- испарение жидкости с поверхности кожи и верхних дыхательных

путей;

- выделение мочи и кала.

Физическая терморегуляция осуществляется следующими путями.

Контактная конвекция — прямой обмен тепла между двумя объектами с разной температурой, находящимися в прямом контакте друг с другом.

Дистантная конвекция — переход тепла в поток воздуха, который движется около поверхности тела и, нагреваясь, заменяется новым, более холодным.

Радиация — отдача тепла путем излучения электромагнитной энергии в

виде инфракрасных лучей.

Регуляция теплоотдачи. Конвекция, теплоизлучение ииспарение тепла прямо пропорциональны теплоемкости окружающей среды.

Теплоотдача зависит от объема поверхности тела. Известно, что многие животные на холоде сворачиваются в клубок, занимая меньший объем. Процессы конвекции, излучения и испарения тепла зависят от свойств кожного покрова. Шерстный покров кожи у животных препятствует теплоотдаче.

Сосудистые реакции при перегревании. В основе всех физических процессов теплоотдачи у человека лежат физиологические процессы, связанные с изменением под влиянием окружающей температуры просвета поверхностных сосудов кожи. При действии высокой температуры сосуды расширяются, при действии низкой — суживаются. Эти реакции осуществляются за счет активации вегетативной нервной системы — парасимпатического отдела в первом случае и симпатического — во втором.

В механизмах расширения сосудов кожи принимает участие брадикинин, который продуцируется потовыми железами через холинергические симпатические волокна.

Теплоотдача в водной среде. Процессы теплоотдачи зависят от физических свойств окружающей среды. Наиболее сложно меняются процессы теплоотдачи, так же как и теплопродукции, в водной среде. Прохладная вода обладает наибольшей теплоемкостью. В воде исключается испарение. Одновременно вода оказывает физическое давление на покровы тела, происходит перераспределение массы тела. Температура воды оказывает раздражающее действие на рецепторы кожи и интерорецепторы.

Потоотделение. Наиболее существенным механизмом теплоотдачи является потоотделение. С 1 г пара организм теряет около 600 кал тепла. Потоотделение имеет существенное значение для поддержания оптимального уровня температуры тела в условиях повышенной температуры окружающей среды, особенно в жарких странах. Установлено, что не все люди в равной степени обладают способностью к усиленному потоотделению в условиях повышенной температуры.

#48 Проанализируйте динамику работы функциональной системы, поддерживающей оптимальную для метаболизма температуру крови при понижении температуры окружающей среды. Гипотермия.

Функциональная система, определяющая оптимальную для метаболизма температуру тела, объединяет две подсистемы: внутренней эндогенной саморегуляции и целенаправленного поведения. Эндогенные механизмы саморегуляции за счет процессов теплопродукции и тепловыделения определяют поддержание необходимой для метаболизма температуры тела. Функциональная система:

Полезный приспособительный результат

Показатель, ради которого работает данная функциональная система,— температура крови. С одной стороны, она обеспечивает нормальное течение процессов метаболизма, а с другой — сама определяется их интенсивностью.

Для нормального течения метаболических процессов гомойотермные животные, в том числе и человек, вынуждены поддерживать температуру тела на относительно постоянном уровне. Однако это постоянство условно. Температура различных органов подвержена колебаниям, границы которых зависят от времени суток, функционального состояния организма, теплоизоляционных свойств одежды и др.

Температурные «ядро» и «оболочка»

Организм человека состоит из внутреннего гомойотермного «ядра» и пойкилотермной «оболочки», относительно легко меняющей свою температуру в зависимости от условий внешней среды. Эти представления основаны на том, что постоянная температура (37 °С), свойственная глубоким тканям тела человека, сохраняется лишь на глубине около 2,5 см. Слой поверхностно расположенных тканей толщиной до 2,5 см. имеет температуру, отличающуюся от температуры внутренних органов. Температура поверхностного слоя в отличие от внутреннего изменяется под влиянием внутренних и внешних причин.

Гипотермическиесостояния. К гипотермическим относятся состояния, характеризующиеся понижением температуры тела ниже нормы. В основе их развития лежит расстройство механизмов терморегуляции, обеспечивающих оптимальный тепловой режим организма. Различают охлаждение организма (собственно гипотермию) и управляемую (искусственную) гипотермию, или медицинскую гибернацию.Гипотермиявозникает в результате действия на организм низкой температуры внешней среды и/или значительного снижения теплопродукции в нём. Гипотермия характеризуется нарушением (срывом) механизмов теплорегуляции и проявляется снижением температуры тела ниже нормы.

#49 Проанализируйте динамику работы функциональной системы, поддерживающей оптимальную для метаболизма температуру крови при повышении температуры окружающей среды.

См. рис. выше.

Гипертермическиесостояния. К гипертермическим состояниям относятся перегревание организма (или собственно гипертермия), тепловой удар, солнечный удар, лихорадка, различные гипертермические реакции.Лихорадка. Наиболее важное клиническое значение имеет лихорадка — общая неспецифическая реакция организма, в большинстве случаев развивающаяся в ответ на попадание в организм и/или образование в нём пирогена. Важным проявлением лихорадки является повышение температуры тела, не зависящее от температуры окружающей среды. Лихорадка отличается от других гипертермических состояний сохранением механизмов терморегуляции на всех этапах её развития.

#50 Объясните методы определения энергозатрат орг-ма чел-ка: прямая и непрямая калориметрия, неполный и полный газовый анализ, дыхательный коэффициент и его изменения при физической работе.

Методы изучения обмена энергии в организме.

Методы определения количества образовавшейся энергии в организме называются калориметрическими.В качестве основной единицы энергии принятджоуль (Дж): 1 ккал равна 4,19 кДж.

Существует два вида калориметрии: прямая и непрямая (косвенная).

Прямая калориметрия - метод определения энергетических затрат организма по количеству выделенного им тепла. Прямая калориметрия проводится в специальных камерах - калориметрах, которые улавливают тепло, отдаваемое организмом. Метод прямой калориметрии является очень точным, но в виду сложности оборудования и трудоемкости самого процесса определения тепла в настоящее время применяется редко. Более широкое распространение получил метод непрямой калориметрии.

Непрямая калориметрияподразделяется на несколько видов.

1. Непрямая калориметрия, основанная на учете теплотворной способности питательных веществ.Теплотворная способность или калорическая ценность питательных веществ определяется путем сжигания 1г вещества в специальном калориметре ("бомба" Бертло) путем пропускания электрического тока. Сам калориметр погружен в воду и о количестве выделившегося тепла судят по изменению температуры воды. Калорическая ценность 1 г белка равна 4,1 ккал (17,17 кДж), 1 г жира - 9,3 ккал (38,96 кДж), 1 г углеводов - 4,1 ккал (17,17 кДж).

Так как тепловой эффект химического процесса не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием химической системы, то закономерности, полученные в "бомбе" Бертло, можно перенести на живой организм, где эти вещества не горят, а медленно окисляются.

Жиры и углеводы горят в калориметре и окисляются в организме до одних и тех же конечных продуктов - углекислого газа и воды, поэтому количество тепла, выделяемого в калориметре и в живом организме будет одинаковым. При окислении белков в организме образуются креатинин, мочевина, мочевая кислота, которые дальше не окисляются и выводятся из организма. В калориметрической "бомбе" эти вещества сгорают до углекислого газа, воды и аммиака и выделяют еще некоторое количестве тепла. Поэтому для белков введено понятие физической и физиологическойкалорической ценности. Физиологическая калорическаяценность 1 г белка (4,1 ккал) меньше физической (5,6 ккал).

Таким образом, зная количество принятых питательных веществ и их калорическую ценность можно рассчитать количество энергии, выделившейся в организме.

2. Непрямая калориметрия, основанная на данных газового анализа.При изучении калорической ценности питательных веществ было установлено, что поглощению определенного количества кислорода и выделению определенного количества углекислого газа за один и тот же промежуток времени соответствует определенное количество выделенного тепла. Такая зависимость позволяет использовать для определения количества тепла, освобождающегося в организме, данные газового анализа: количество поглощенного кислорода и количество выделенного за этот же промежуток времени углекислого газа.

По соотношению между количеством выделенного углекислого газа и количеством потребленного в данный период времени кислорода можно судить о том, какие вещества преимущественно окисляются. Соотношение между количеством углекислого газа, выделившегося в процессе окисления, и количеством кислорода, пошедшего на окисление, называется дыхательным коэффициентом (ДК). ДК при окислении белков равен 0,8, при окислении жиров - 0,7, а при окислении углеводов - 1,0.

Экспериментальными исследованиями установлено, что каждому значению ДК соответствует определенный калорический эквивалент кислорода, т. е. количество тепла, которое освобождается при полномокислении какого-либо вещества до углекислого газа и воды на каждый литр поглощенного при этом кислорода. Калорический эквивалент кислорода при окислении белков равен 4,8 ккал (20,1 кДж), жиров - 4,7 ккал (19,619 кДж), углеводов - 5,05 ккал (21,2 кДж).

Неполный и полный газовый анализ.

Непрямая калориметрия с использованием данных газового анализа подразделяется на три метода.

1. Метод непрямой калориметрии с использованием данных неполного газового анализа.Он основан на определения только количества поглощенного кислорода, умножив которое на средний калорический эквивалент кислорода (4,85 ккал), можно определить количество образовавшегося тепла.

2. Метод непрямой калориметрии с использованием данных полного газового анализа,т. е. определение количества поглощенного кислорода и выделенного углекислого газа, с последующим расчетом ДК. По таблицам определяют тот калорический эквивалент кислорода, который соответствует найденному ДК.

3. Метод непрямой калориметрии с использованием данных полного газового анализа и с учетом количества распавшегося белка.Так как в состав молекулы белка входит азот, который выделяется с калом, мочой, потом, то можно определить количество выделившегося азота, а, следовательно, и количество распавшегося белка, зная, что 1 г азота содержится в 6,25 г белка.

Характеристика дыхательного коэффициента.

Отношение объема выделенной двуокиси углерода к объему поглощенного кислорода называется дыхательным коэффициентом.

ДК = СО2(л)/О2(л)

Дыхательный коэффициент характеризует тип питательных веществ, преимущественно окисляемых в организме на момент его определения. Его рассчитывают, исходя из формул химических окислительных реакций.

Для углеводов:

С6Н12О2+ 6О2о - 6СО2+ 6Н2О;

ДК = (6 объемов СО2)/(6 объемов О2) = 1

Для жиров:

15Н48,О6+ 145О2о - 102СО2+ 98Н2О;

ДК = (102 объема СО2)/(145 объемов О2) = 0,703

Для белковрасчет представляет определенную трудность, так как белки в организме окисляются не полностью. Некоторое количество азота в составе мочевины (NH2)2CO2выводится из организма с мочой, потом и фекалиями. Поэтому для расчета ДК при окислении белка следует знать количество белка, поступившего с пищей, и количество экскретированных азотсодержащих «шлаков». Установлено, что для окисления углерода и водорода при катаболизме белка и образования 77,5 объема двуокиси углерода необходимо 96,7 объема кислорода. Следовательно, для белков:

ДК = (77,5 объема СО2)/(96,7 объема О2) = 0,80

При смешанной пищедыхательный коэффициент составляет 0,8—0,9.

Дыхательный коэффициент при мышечной работе. Главным источником энергии при интенсивной мышечной работе являются углеводы. Поэтомуво время работы ДК приближается к единице.

Сразу по окончании работыДК может резко повыситься. Это явление отражает компенсаторные процессы, направленные на удаление из организма избытка двуокиси углерода, источником которого являются так называемые нелетучие кислоты.

Через некоторое время по завершении работы ДК может резко снизиться по сравнению с нормой. Это связано с уменьшением выделения двуокиси углерода легкими вследствие компенсаторной задержки его буферными системами крови, предотвращающими сдвиг рН в основную сторону.

Примерно через часпосле завершения работы ДК становится нормальным.

Калорический эквивалент кислорода. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, т.е. количество тепла, которое освобождается при полном окислении 1г питательного вещества (до конечных продуктов) в присутствии 1л кислорода.

Калорический эквивалент кислорода при окислении белков равен 4,8 ккал (20,1 кДж), жиров - 4,7 ккал (19,619 кДж), углеводов - 5,05 ккал (21,2 кДж).

Первоначально газообмен у человека и животных определяли методом Крога в специальных камерах закрытого типа (респираторная камера М.Н. Шатерникова).

В настоящее время полный газовый анализ проводят открытым респираторным методом Дугласа-Xолдейна. Метод основан на сборе выдыхаемого воздуха в специальный приемник (воздухонепроницаемый мешок) с последующим определением общего его количества и содержания в нем кислорода и двуокиси углерода при помощи газоанализаторов.

#51 Охарактеризуйте основной обмен,факторы, влияющие на его величину. Охарактеризуйте рабочий обмен.

Основной обмен — минимальное количество энергии, необходимое для обеспечения нормальной жизнедеятельности в условиях относительного физического и психического покоя. Эта энергия расходуется на процессы клеточного метаболизма, кровообращение, дыхание, выделение, поддержание температуры тела, функционирование жизненно важных нервных центров мозга, постоянную секрецию эндокринных желез.

Печень потребляет 27 % энергии основного обмена, мозг — 19 %, мышцы — 18 %, почки — 10 %, сердце — 7 %, все остальные органы и ткани — 19 %.

Методы определения основного обмена.

Расчет основного обмена по таблицам. Специальные таблицы дают возможность по росту, возрасту и массе тела определить средний уровень основного обмена человека. При сопоставлении этих величин с результатами, полученными при исследовании рабочего обмена с помощью приборов, можно вычислить разницу, эквивалентную затратам энергии для выполнения работы.

Вычисление основного обмена по гемодинамическим показателям (формула Рида).Расчет основан на взаимосвязи между артериальным давлением, частотой пульса и теплопродукцией организма. Формула дает возможность вычислить процент отклонения величины основного обмена от нормы. Допустимым считается отклонение ±10%.

ПО = 0,75 • (ЧСС + ПД • 0,74) - 72,

где ПО — процент отклонений; ЧСС — частота сердечных сокращений

(пульс); ПД — пульсовое давление.

Для определения соответствия основного обмена нормативным данным по гемодинамическим показателям существуют специальные номограммы.

Расход энергии в состоянии покоя различными тканями организма неодинаков. Более активно расходуют энергию внутренние органы, менее активно — мышечная ткань. Интенсивность основного обмена в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Люди с низкой массой тела производят больше тепла на 1 кг массы тела, чем с высокой. Если рассчитать энегoвыделение на 1 м2поверхности тела, то эта разница почти исчезает. Согласно еще одномуправилу Рубнера, основной обмен приблизительно пропорционален поверхности тела для разных видов животных и человека.

Отмечены сезонные колебания величины основного обмена — повышение его весной и снижение зимой. На величину основного обмена влияют предшествующая мышечная работа, состояние желез внутренней секреции.

StudFiles.ru

Методы определения основного обмена

Расчет основного обмена по таблицам.Специальные таблицы дают возможность по росту, возрасту и массе тела определить средний уровень основного обмена человека. При сопоставлении этих величин с результатами, полученными при исследовании рабочего обмена с помощью приборов, можно вычислить разницу, эквивалентную затратам энергии для выполнения работы.

Вычисление основного обмена по гемодинамическим показателям (формула Рида).Расчет основан на взаимосвязи между артериальным давлением, частотой пульса и теплопродукцией организма. Формула дает возможность вычислить процент отклонения величины основного обмена от нормы. Допустимым считается отклонение ±10 %.

ПО = 0,75 • (ЧСС + ПД • 0,74) - 72,

где ПО — процент отклонений; ЧСС — частота сердечных сокращений

(пульс); ПД — пульсовое давление.

Для определения соответствия основного обмена нормативным данным по гемодинамическим показателям существуют специальные номограммы.

Расход энергии в состоянии покоя различными тканями организма неодинаков. Более активно расходуют энергию внутренние органы, менее активно — мышечная ткань. Интенсивность основного обмена в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Люди с низкой массой тела производят больше тепла на 1 кг массы тела, чем с высокой. Если рассчитать энегoвыделение на 1 м2 поверхности тела, то эта разница почти исчезает. Согласно еще одному правилу Рубнера, основной обмен приблизительно пропорционален поверхности тела для разных видов животных и человека.

Отмечены сезонные колебания величины основного обмена — повышение его весной и снижение зимой. На величину основного обмена влияют предшествующая мышечная работа, состояние желез внутренней секреции.

studopedia.ru

Условия определения основного обмена.

Любая работа — физическая или умственная, а также прием пищи, ко­лебания температуры окружающей среды и другие внешние и внутренние факторы, изменяющие уровень обменных процессов, влекут за собой уве­личение энерготрат.

Поэтому основной обмен определяют в строго контролируемых, искус­ственно создаваемых условиях: утром, натощак (через 12—14 ч после по­следнего приема пищи), в положении лежа на спине, при полном расслаб­лении мышц, в состоянии спокойного бодрствования, в условиях темпера­турного комфорта (18—20 °С). За 3 сут до исследования из рациона исклю­чают белковую пищу. Выражается основной обмен количеством энергоза­трат из расчета 1 ккал на 1 кг массы тела в час [1 ккал/(кг • ч)].

Факторы, определяющие величину основного обмена.Основной обмен зависит от возраста, роста, массы тела, пола человека. Самый интенсивный основной обмен в расчете на 1 кг массы тела отмечается у детей (у ново­рожденных — 53 ккал/кг в сутки, у детей первого года жизни — 42 ккал/кг). Средние величины основного обмена у взрослых здоровых мужчин состав­ляют 1300—1600 ккал/сут; у женщин эти величины на 10 % ниже. Это свя­зано с тем, что у женщин меньше масса и поверхность тела.

Закон поверхности тела Рубнера.Зависимость интенсивности основного обмена от площади поверхности тела была показана немецким физиологом Рубнером для различных животных. Со­гласно этому правилу, интенсивность основного обмена тесно связана с раз­мерами поверхности тела: у теплокровных организмов, имеющих разные ра­змеры тела, с 1 м2 поверхности рассеивается одинаковое количество тепла.

Таким образом, закон поверхности тела гласит: энергети­ческие затраты теплокровного организма пропорциональны площади поверхности тела.

С возрастом величина основного обмена неуклонно снижается. Сред­няя величина основного обмена у здорового человека равна приблизитель­но 1 ккал/(кг-ч).

studopedia.ru

Основной обмен это:

Основной обмен один из показателей интенсивности обмена веществ и энергии в организме; выражается количеством энергии, необходимой для поддержания жизни в состоянии полного физического и психического покоя, натощак, в условиях теплового комфорта. О. о. отражает энергетические траты организма, обеспечивающие постоянную деятельность сердца, почек, печени, дыхательной мускулатуры и некоторых других органов и тканей. Освобождаемая в ходе метаболизма тепловая энергия расходуется на поддержание постоянства температуры тела. Основной обмен определяют в состоянии бодрствования (во время сна уровень О. о. понижается на 8—10%). Определение О. о. проводят в условиях мышечного покоя; не менее чем через 12—16 ч после последнего приема пищи, при исключении белков из пищевого рациона за 2—3 суток до момента определения О. о.; при внешней температуре комфорта, не вызывающей ощущения холода или жары (18—20°). Величину О. о. обычно выражают количеством тепла в килокалориях (ккал) или в килоджоулях (кДж) в расчете на 1 кг массы тела или на 1 м2 поверхности тела за 1 ч или за 1 сутки. Величина, или уровень, О. о. колеблется у различных людей и зависит от возраста, веса (массы) тела, пола и некоторых других факторов. В среднем величина основного обмена у мужчины весом 70 кг составляет около 1700 ккал в сутки (1 ккал на 1 кг веса в 1 ч). У женщин интенсивность О. о. ниже примерно на 10—15%. У новорожденных величина О. о. составляет 46—54 ккал на 1 кг массы тела в сутки и возрастает в течение первых месяцев жизни, достигая максимума в конце первого — начале второго года. При этом интенсивность О. о. ребенка превышает О. о. взрослого человека в 1,5—2 раза. Затем интенсивность О. о. начинает постепенно уменьшаться, стабилизируясь в возрасте 20—40 лет. У пожилых людей О. о. снижается. Если расчет интенсивности О. о. производить не на единицу веса, а на единицу площади, то выясняется, что индивидуальные различия величины О. о. менее значительны. На основании фактов, свидетельствующих о наличии закономерной связи между интенсивностью обмена веществ и величиной поверхности, немецкий физиолог Рубнер (М. Rubner) сформулировал «закон поверхности тела», согласно которому затраты энергии теплокровными животными пропорциональны величине поверхности тела. Вместе с тем установлено, что этот закон имеет относительное значение и позволяет проводить лишь ориентировочные расчеты высвобождения энергии в организме. Против абсолютного значения «закона поверхности» свидетельствует и тот факт, что интенсивность обмена веществ может значительно различаться у двух индивидуумов с одинаковой поверхностью тела. Уровень окислительных процессов определяется, т.о. не столько теплоотдачей с поверхности тела, сколько теплопродукцией тканей и зависит от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной и эндокринной систем. Даже в том случае, когда соблюдаются все стандартные условия для определения О. о., интенсивность процессов обмена подвергается суточным колебаниям: она возрастает утром и снижается в ночной период (см. Биологические ритмы). Отмечены сезонные изменения О. о. у человека: повышение его весной и ранним летом и понижение поздней осенью и зимой. Сезонные изменения связаны не столько с температурными факторами, сколько с изменением двигательной активности, колебаниями гормональной активности и т.д. Потребление питательных веществ и их последующее переваривание повышают интенсивность процессов обмена, особенно в том случае, если питательные вещества имеют белковую природу. Такое влияние пищи на уровень обмена веществ и энергии носит название специфического динамического действия пищи. К изменению уровня О. о. ведут также продолжительное ограничение питания, избыточное потребление пищи, повышенное или недостаточное содержание в рационе отдельных питательных веществ. Температура окружающей среды также влияет на интенсивность процессов О. о.: сдвиги в сторону охлаждения приводят к большему усилению обмена веществ, чем соответствующие сдвиги в сторону повышения температуры (при падении температуры воздуха на 10° уровень О. о. повышается на 2,5%). Определение О. о. имеет большое значение в диагностике некоторых заболеваний. На основании результатов обследования большого числа здоровых людей установлена средняя норма О. о. — так называемый должный О. о. Должный О. о. (в ккал за 24 ч) принят в расчетах за 100%. Фактический О. о. выражается в процентах отклонения от должного в сторону повышения со знаком плюс, в сторону понижения — со знаком минус Допустимое отклонение от должной величины колеблется от +10 до +15%. Отклонения в пределах от +15% до +30% считаются сомнительными, требуют контроля и наблюдения; от +30% до +50% относят к отклонениям средней тяжести; от +50% до +70% — к тяжелым, а свыше +70% — к очень тяжелым. Снижение обмена на 10% еще нельзя считать патологическим, При снижении на 30—40% требуется лечение основного заболевания. Для определения О. о. используют методы прямой и непрямой калориметрии. Необходимо учитывать возможность расхождения данных прямой и непрямой калориметрии, что связано с кратковременностью определения потребления кислорода. При более длительных определениях (порядка 24 ч) результаты обоих методов должны, очевидно, совпадать. Искажение представления об О. о. может быть связано с тем, что калорическая ценность кислорода оказывается различной в зависимости от характера субстратов (белки, жиры или углеводы), преимущественно окисляющихся в организме в процессе Газообмена. Величину О. о. можно ориентировочно определить с помощью специальных клинических формул (например, формул Рида, Гейла и др.). По формуле Рида процент отклонения О. о. равен: 75, умноженным на пульс, плюс разница систолического и диастолического артериального давления, умноженная на 0,74—72. По формуле Гейла процент отклонения О. о. равен: пульс плюс разница систолического и диастолического АД минус 111. Общими обязательными условиями при этом являются следующие: подсчет пульса, измерение АД должны осуществляться всегда только в стандартных условиях О. о.; клинические формулы неприменимы к больным с декомпенсированными заболеваниями сердца, почек и печени, гипертонической болезнью, мерцательной аритмией, пароксизмальной тахикардией, недостаточностью клапанов аорты и некоторыми другими тяжелыми заболеваниями и состояниями. Патологическая физиология. Согласно существующим представлениям, общая теплопродукция организма складывается из первичной и вторичной теплоты. Первичная теплота — это результат рассеивания энергии окисления субстратов в цепи транспорта электронов, вторичная — следствие использования для той или иной клеточной функции образующихся в ходе тканевого дыхания макроэргических соединений. Основные клеточные механизмы нарушений О. о. сводятся к изменению интенсивности образования первичной или вторичной теплоты или обоих ее видов вместе. Изменение каждого из этих процессов сопровождается изменением потребления кислорода — наиболее распространенного критерия величины О. о. В случае усиленного расходования макроэргических соединений на различные виды работы клетки вступает в силу дыхательной контроль в митохондриях, сущность которого заключается в том, что продукт дефосфорилирования АТФ является мощным стимулятором тканевого дыхания (см. Дыхание тканевое). При ослаблении или полном снятии дыхательного контроля («рыхлое» сопряжение или разобщение окислительного фосфорилирования) обычно регистрируется усиленное потребление кислорода. Патология нервной системы может обусловить изменение О. о. как в результате прямого нарушения образования первичной теплоты, так и вследствие изменения интенсивности функционирования того или иного органа или ткани. Примером первого механизма являются, по-видимому, поражения диэнцефальных вегетативных центров (травмы, опухоли, кровоизлияния и т.п.), воспроизводимые в эксперименте «тепловыми уколами» в подкорковые образования. Второй механизм обусловливает снижение О. о. при параличах и повышение его при усиленном функционировании органов дыхания, кровообращения, мышц и. по-видимому, печени. Значение изменений деятельности различных органов для возникновения сдвигов в О. о. не одинаково. Так, напряженная деятельность головного мозга или почек относительно мало влияет на общий тепловой баланс организма, тогда как мышечная работа, а также работа сердца и органов дыхания играют определяющую роль в общей теплопродукции организма. Значительное влияние на О. о. оказывает тонус вегетативной (преимущественно симпатической) нервной системы, т.к. вырабатываемые ею медиаторы принимают непосредственное участие в терморегуляции (Терморегуляция). Опухоли хромаффинной ткани (см. Хромаффинома) секретирующей адреналин и норадреналин, сопровождаются резким повышением О. о. Удаление симпатических ганглиев и мозгового вещества надпочечников, наоборот, может снизить О. о. Помимо влияния на функцию внутренних органов, эти вещества, по-видимому, могут действовать и на процессы образования первичной теплоты, но механизм такого эффекта пока не полностью ясен. Причиной изменений О. о. при разнообразных видах эндокринной патологии наиболее часто являются заболевания щитовидной железы, сопровождающиеся повышенной или пониженной секрецией тиреоидных гормонов, выполняющих в организме специфическую роль регуляторов интенсивности тканевого дыхания и энергетического обмена. Повышение О. о. служит наиболее постоянным признаком гипертиреоза, сопровождающего такие эндокринные заболевания, как диффузный токсический зоб, тиреотоксическую аденому и др. (см. Тиреотоксикоз). Снижение функции щитовидной железы (см. Гипотиреоз) обусловливает уменьшение основного обмена. Выраженные изменения О. о. наблюдаются при патологии передней доли гипофиза, например снижение О. о. при гипопитуитаризме (см. Гипоталамо-гипофизарная недостаточность) или удалении гипофиза. Роль других гормонов в генезе механизмов нарушения О. о. недостаточно изучена. Гипокортицизм обычно сопровождается снижением О. о., однако у больных аддисоновой болезнью его снижение является непостоянным симптомом. Гормон поджелудочной железы инсулин снижает О. о. за счет своего угнетающего действия на катаболические процессы. Способность этого гормона уменьшать теплопродукцию используют при экспериментальной гибернации. Удаление поджелудочной железы, а также сахарный диабет приводят к повышению О. о., что, вероятно, обусловлено не только выпадением прямого влияния инсулина на теплопродукцию, но и метаболическими изменениями, в частности повышением уровня свободных жирных кислот и кетоновых тел, которые в больших концентрациях способны угнетать процессы окислительного фосфорилирования. Изменения О. о. часто наблюдаются при различных интоксикациях, инфекционно-лихорадочных заболеваниях. При этом выявлена независимость стимуляции окислительных процессов от самого факта существования лихорадки. Наиболее изученным является действие 2,4-α-динитрофенола, который считается классическим разобщителем окислительного фосфорилирования. Повышение О. о. при динитрофеноловой интоксикации, как и при действии тиреоидных гормонов, характеризуется большим приростом теплопродукции, несоразмерным с потреблением кислорода. Другие токсины могут повышать О. о. либо за счет разобщения окислительного фосфорилирования (дифтерийный, стафилококковый и стрептококковый токсины, салицилаты), либо за счет иных, не до конца выясненных причин (например, эндотоксины). Имеются данные, что повышение О. о., вызываемое инфекционно-токсическими агентами, связано с действием гормонов щитовидной железы. Повышение О. о. характерно для поздних стадий развития злокачественных опухолей и особенно лейкозов. Причины этого не вполне установлены, но, по-видимому, сам клеточный рост как процесс, сопровождающийся усиленным распадом макроэргических соединений с увеличением образования вторичной теплоты, не исчерпывает механизмов повышения теплопродукции в этих случаях. Гипоксия обычно характеризуется повышением О. о. за счет повышения интенсивности деятельности систем органов дыхания и кровообращения, а также накопления токсических продуктов межуточного обмена. Вместе с тем очень тяжелые степени гипоксии сопровождаются снижением О. о. При анализе влияния гипоксии необходимо учитывать ее частое сочетание с гиперкапнией, поскольку значительный избыток углекислоты угнетает теплопродукцию. Анемии обычно протекают с повышением О. о., в генезе которого могут играть роль токсические продукты метаболизма. Фактором, обусловливающим изменение О. о., является длительное голодание, при котором включаются механизмы резкого ограничения энерготрат, приводящие к снижению О. о. Библиогр.: Држевецкая И.А. Основы физиологии обмена веществ и эндокринная система, М., 1977; Мак-Мюррей У. Обмен веществ у человека, пер. с англ., М., 1980; Теппермен Дж. и Теппермен X. Физиология обмена веществ и эндокринной системы, пер. с англ., М., 1989; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 4, М., 1986.

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг.

dic.academic.ru

Читайте также