Модель определение

Модель: виды моделей, понятие и описание

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

модель виды моделей

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).модель это

Итак, модель – это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены материальными точками, то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).виды моделей данных

В свою очередь, теоретические модели востребованы при изучении естественных и точных наук (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование – метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. Виды моделей ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения – моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его аэродинамических качеств важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.виды моделей

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия – химический состав, биология – поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды информационных моделей разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом). описание внешнего вида моделиОни широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели – это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами. виды моделей данныхС их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды математических моделей обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях корня уравнения принимает полярные значения.

виды математических моделейА метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

fb.ru

38. Математические модели: определение, классификация, требования, особенности и преимущества. Основные этапы моделирования.

Математические модели – специальный инструмент, который позволяет оценить недоступные прямым измерениям свойства регуляторных систем и процессов. Математическая модель представляет собой систему математических соотношений – формул, функций, уравнений, описывающих те или иные стороны изучаемого объекта, явления, процесса. Модель – не только отражение наших знаний об исследуемом объекте, но и источник новых сведений, полученных с помощью модели.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

-дескриптивные (описательные) модели;

-оптимизационные модели;

-многокритериальные модели;

-игровые модели.

Дескриптивные (описательные) модели. Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели. Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики — теория игр, — изучающий методы принятия решений в условиях неполной информации.

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.

Адекватность. Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. В пространстве внешних параметров выделить область адекватности модели, где погрешность меньше заданной предельно допустимой погрешности. Определение области адекватности моделей - сложная процедура, требующая больших вычислительных затрат, которые быстро растут с увеличением размерности пространства внешних параметров. Эта задача по объему может значительно превосходить задачу параметрической оптимизации самой модели, поэтому для вновь проектируемых объектов может не решаться.

Универсальность - определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации - затратами машинного времени и памяти.

Противоречивость требований к модели обладать широкой областью адекватности, высокой степени универсальности и высокой экономичности обусловливает использование ряда моделей для объектов одного и того же типа.

Основные этапы математического моделирования

1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

40. Основные задачи и компоненты компьютерных систем функциональной диагностики. Медицинские мониторные и компьютерные технологии: назначение, виды, особенности конфигурации, характеристики программного обеспечения.

Функциональная диагностика — раздел диагностики, содержанием которого являются объективная оценка, обнаружение отклонений и установление степени нарушений функции различных органов и физиологических систем организма на основе измерения физических, химических или иных объективных показателей их деятельности с помощью инструментальных или лабораторных методов исследования.

В узком смысле понятие «функциональная диагностика» обозначает специализированное направление современной диагностики на основе только инструментальных функционально-диагностических исследований, которое в поликлиниках и стационарах представлено самостоятельной организационной структурой в виде оснащенных соответствующими аппаратами и приборами кабинетов или отделений функциональной диагностики со штатом специально подготовленных врачей и среднего медперсонала.

Наиболее распространенными методами, используемыми в этих подразделениях, являются электрокардиография, фонокардиография, реография, спирография, пневмотахеометрия, электроэнцефалография, а в крупных консультативных учреждениях применяются технически более сложные методы исследований функций внешнего дыхания, кровообращения, ЦНС и др., в т.ч. на основе ультразвуковой диагностики. Не входят в структуру этих подразделений, но широко используются для исследования функций различных органов и систем рентгенодиагностика, радионуклидная диагностика, зондирование, эндоскопия, лабораторная диагностика.

Задачи обучения (врачей интернов, ординаторов и врачей функциональной диагностики):

Совершенствование практических навыков в соответствии с программой "Функциональная диагностика".

Отработка навыков индивидуального подхода к больному на основе интеграции знаний и умений, полученных по всей программе обучения в ВУЗе.

Освоение новых современных методов диагностики (сердечно-сосудистой и нервной системы), необходимых в самостоятельной работе врача-специалиста в соответствии с положением о враче-специалисте.

В отделении используются самые современные технологии функциональной диагностики в области кардиологии, нейрофизиологии и ангиологии. Впервые в крае внедрены компьютерная электронейромиография с вызванными потенциалами мозга, суточное мониторирование ЭКГ с измерением артериального давления, компьютерная термография, компьютерная велоэргометрия, ультразвуковая допплерография сосудов головного мозга и конечностей. Все исследования проводятся с использованием современного диагностического оборудования зарубежного и отечественного производства ведущих фирм. Исследования выполняют высококвалифицированные врачи и медицинские сёстры.

Цель, задачи, объект и предмет функциональной диагностики организационных структур

Назначение функциональной диагностики организационных структур заключается в выявлении количественных характеристик и построению качественной, реалистичной модели функционирования организации.

Целью функциональной диагностики является определение влияния содержания и структуры функциональных отношений на конечные результаты деятельности.

Объектом функциональной диагностики является организационная структура и составляющие ее функциональные элементы, процедуры и их характеристики.

Предмет функциональной диагностики - распределение отношений функциональных элементов, их свойств и процедур в процессе функционирования организации.

В связи с этим к важнейшим задачам функциональной диагностики организационных структур относятся:

- Классификация субъектов функционирования (категорий и групп работников);

- Классификация элементов процесса функционирования (действий, процедур);

- Классификация направлений (решаемых проблем), целей функционирования;

- Классификация элементов информационных потоков;

- Проведение обследования деятельности персонала организации;

- Исследование распределения (по времени и частоте) организационных характеристик: процедур, контактов персонала, направлений деятельности, элементов информационных потоков - по отдельности и в комбинациях друг с другом по категориям работников, видам процедур и их направлениям (согласно результатам и логике исследований):

- Выявление реальной структуры функциональных, информационных, иерархических, временных, проблемных отношений между руководителями, сотрудниками и подразделениями;

- Установление структуры распределения рабочего времени руководителей и персонала относительно функций, проблем и целей организации;

- Выявление основных технологий функционирования организации (информационных процессов, включая и недокументированные), их целеполагания в сравнении с декларируемыми целями организации;

- Выявление однородных по специфике деятельности, целевой ориентации и реальной подчиненности групп работников, формирование реальной модели организационной структуры и сравнение ее с декларируемой.

- Определение причин рассогласования декларируемой и реальной структуры организационных отношений.

Системы для проведения мониторинга

Задача оперативной оценки состояния пациента возникает в ряде весьма важных практических направлений в медицине и в первую очередь при непрерывном наблюдении за больным в палатах интенсивной терапии, операционных и послеоперационных отделениях.

В этом случае требуется на основании длительного и непрерывного анализа большого объема данных, характеризующих состояние физиологических систем организма обеспечить не только оперативную диагностику осложнений при лечении, но и прогнозирование состояние пациента, а также определить оптимальную коррекцию возникающих нарушений. Для решения этой задачи предназначены мониторные МПКС.

К числу наиболее часто используемых при мониторинге параметров относятся: электрокардиограмма, давление крови в различных точках, частота 9 дыхания, температурная кривая, содержание газов крови, минутный объем кровообращения, содержание газов в выдыхаемом воздухе.

Аппаратное обеспечение мониторных систем и аналогичных систем для функциональной диагностики принципиально практически не отличается. Важной особенностью мониторных систем является наличие средств экспресс-анализа, и визуализации их результатов в режиме реального времени. Это позволяет отображать на экране монитора также динамику различных производных от контролируемых величин. Все это осуществляется в различных временных масштабах. Причем чем выше качество системы, тем больше возможностей наблюдения динамики контролируемых и связанных с ними показателей она предоставляет. Чаще всего мониторные системы используются для одновременного слежения за состоянием от одного до 6 больных, причем у каждого из них может изучаться до 16 основных физиологических параметров.

Компьютерные технологии в медицине

Медицина – одна из сложнейших наук, и в большинстве случаев даже самому лучшему специалисту бывает сложно поставить точный диагноз заболевания. В таких случаях компьютерная помощь существенно облегчает работу врача, так как результаты обследований пациента, переданные компьютеру, моментально обрабатываются с выявлением аномальных результатов анализа, и уже через несколько минут можно получить полные сведения о возможном диагнозе. Конечно, последнее слово всегда остается за врачом, но помощь компьютера значительно ускоряет процесс принятия правильного решения, от которого зачастую зависит здоровье, а иногда, и жизнь пациента. В современных медицинских учреждениях врачи давно перешли от бумажной работы к работе с компьютерами, в которых хранится необходимая информация об истории болезней всех пациентов, что позволяет медработникам уделять больше времени и внимания больным, а не «возне» с бумагами. Кроме того, современные компьютерные технологии помогают врачу эффективно и оперативно проводить профилактические осмотры.

Компьютеры и информационные технологии уже давно стали неотъемлемой частью самых разных сфер жизни, и медицина не стала исключением. Врачи консультируют пациентов online, диагностическая аппаратура оснащена мощными процессорами, конференции и консилиумы проводятся через интернет. И сегодня медицинские информационные технологии приобретают все большую актуальность, а программное обеспечение для медицины становится все более востребованными.

Предлагаемое программное обеспечение для медицины позволит легко вести полный учет всех оказанных услуг, сданных анализов, выписанных рецептов. Также при автоматизации медицинского учреждения заполняются электронные: амбулаторная карта и история болезни, составляются отчеты и ведется медицинская статистика.( методы диагностики, Рентгеновская компьютерная томография, Ультразвуковое исследование (УЗИ), Электрокардиография, Спирометрия, Гастроскопия , Медицинское программное обеспечение.

StudFiles.ru

Модель (значения)

Логотип Викисловаря В Викисловаре есть статья «модель» Wikiquote-logo.svg В Викицитатнике есть страница по теме
Модель

Модель:

  • Модель (в науке и технике) — упрощённый объект, сохраняющий лишь важнейшие свойства настоящего существующего объекта или системы, и предназначенный для их изучения; упрощённое представление действительного объекта и/или протекающих в нём процессов.
  • Модель (информатика) — система, исследование которой служит средством для получения информации о другой системе
    • модели данных: реляционная, иерархическая, сетевая — теоретическая концепция работы с данными.
    • информационная модель — модель данных конкретной предметной области или её объекта.
    • концептуальная модель (предметной области, объекта).
    • модели процесса разработки программного обеспечения, например — V-Model,
    • Сетевые модели — модели взаимодействия сетевых протоколов.
  • Математическая модель — применяется в естественных, общественных и технических науках, а также при решении различных задач проектирования как средство исследования реальных и проектируемых систем.
    • Модель (в теории моделей) — теоретико-множественная структура, наделяющая содержанием формулы и высказывания формальной теории.
  • Физическая модель — техническое устройство, имитирующее определённые характеристики либо свойства материальных объектов или физических явлений.
  • Модель (промышленность) — совокупность каких-либо серийно производимых одинаковых изделий (модельный ряд).
  • 3D-модель — объект в компьютерной графике.
  • Модель (профессия) — человек, демонстрирующий модели одежды (манекенщик, манекенщица).
    • Фотомодель — человек, профессионально снимающийся на фотографиях.
    • Натурщик — человек, позирующий художнику, скульптору.

Люди

  • Модель, Абрам Яковлевич (1895—1976) — советский шахматист, преподаватель математики.
  • Модель, Вальтер — генерал-фельдмаршал Третьего рейха.
  • Модель, Зиновий Иосифович (1899—1993) — советский радиотехник, специалист в области радиопередающих устройств, лауреат Сталинской премии.
  • Модель, Иоганн Георг (1711—1775) — химик.

Прочее

  • Модель (манхва) — серия комиксов корейской художницы Ли Со Ён.
  • Модель (альбом) — музыкальный альбом (2001) группы «Океан Ельзи».

ru.wikipedia.org

Математическая модель

Математи́ческая моде́ль — математическое представление реальности[1], один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.

Процесс построения и изучения математических моделей называется математическим моделированием.

Все естественные и общественные науки, использующие математический аппарат, по сути, занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования[⇨].

Определения

Никакое определение не может в полном объёме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты.

По Ляпунову, математическое моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель), находящаяся в некотором объективном соответствии с познаваемым объектом, способная замещать его в определенных отношениях и дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте[2].

В других вариантах, математическая модель определяется как объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала[3], как «„эквивалент“ объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям»[4], как систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого, исследование которых средствами математики должно ответить на поставленные вопросы о свойствах некоторой совокупности свойств объекта реального мира[5], как совокупность математических соотношений, уравнений, неравенств, описывающих основные закономерности, присущие изучаемому процессу, объекту или системе[6].

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий[7]:

  • Линейные или нелинейные модели[8];
  • Сосредоточенные или распределённые системы[9];
  • Детерминированные или стохастические[10];
  • Статические или динамические[10];
  • Дискретные или непрерывные[10].

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом — распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика».[11] Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель[12]. Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель[13], умозрительная модель[14] или предмодель[15]. При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики, биологии, экономики, социологии, психологии, и большинства других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

В работе Пайерлса[16] дана классификация математических моделей, используемых в физике и, шире, в естественных науках. В книге А. Н. Горбаня и Р. Г. Хлебопроса[17] эта классификация проанализирована и расширена. Эта классификация сфокусирована, в первую очередь, на этапе построения содержательной модели.

Гипотеза

Модели первого типа — гипотезы («такое могло бы быть»), «представляют собой пробное описание явления, причем автор либо верит в его возможность, либо считает даже его истинным». По Пайерлсу это, например, модель Солнечной системы по Птолемею и модель Коперника (усовершенствованная Кеплером), модель атома Резерфорда и модель Большого Взрыва.

Модели-гипотезы в науке не могут быть доказаны раз и навсегда, можно лишь говорить об их опровержении или неопровержении в результате эксперимента[18].

Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Феноменологическая модель

Второй тип — феноменологическая модель («ведем себя так, как если бы…»), содержит механизм для описания явления, хотя этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен, и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа, и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Приближение

Третий тип моделей — приближения («что-то считаем очень большим или очень малым»). Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае — использование приближений (моделей типа 3). Среди них модели линейного отклика. Уравнения заменяются линейными. Стандартный пример — закон Ома.

Если мы используем модель идеального газа для описания достаточно разреженных газов, то это — модель типа 3 (приближение). При более высоких плотностях газа тоже полезно представлять себе более простую ситуацию с идеальным газом для качественного понимания и оценок, но тогда это уже тип 4.

Упрощение

Четвёртый тип — упрощение («опустим для ясности некоторые детали»), в такой отбрасываются детали, которые могут заметно и не всегда контролируемо повлиять на результат. Одни и те же уравнения могут служить моделью типа 3 (приближение) или 4 (опустим для ясности некоторые детали) — это зависит от явления, для изучения которого используется модель. Так, если модели линейного отклика применяются при отсутствии более сложных моделей (то есть не производится линеаризация нелинейных уравнений, а просто ищутся линейные уравнения, описывающие объект), то это уже феноменологические линейные модели, и относятся они к следующему типу 4 (все нелинейные детали «для ясности» опускаем).

Примеры: применение модели идеального газа к неидеальному, уравнение состояния Ван-дер-Ваальса, большинство моделей физики твердого тела, жидкостей и ядерной физики. Путь от микроописания к свойствам тел (или сред), состоящих из большого числа частиц, очень длинен. Приходится отбрасывать многие детали. Это приводит к моделям четвёртого типа.

Эвристическая модель

Пятый тип — эвристическая модель («количественного подтверждения нет, но модель способствует более глубокому проникновению в суть дела»), такая модель сохраняет лишь качественное подобие реальности и даёт предсказания только «по порядку величины». Типичный пример — приближение средней длины свободного пробега в кинетической теории. Оно даёт простые формулы для коэффициентов вязкости, диффузии, теплопроводности, согласующиеся с реальностью по порядку величины.

Но при построении новой физики далеко не сразу получается модель, дающая хотя бы качественное описание объекта — модель пятого типа. В этом случае часто используют модель по аналогии, отражающую действительность хоть в какой-нибудь черте.

Аналогия

Тип шестой — модель-аналогия («учтём только некоторые особенности»). Пайерлс приводит историю использования аналогий в первой статье Гейзенберга о природе ядерных сил[19].

Мысленный эксперимент

Седьмой тип моделей — мысленный эксперимент («главное состоит в опровержении возможности»). Такой тип моделирования часто использовался Эйнштейном, в частности, один из таких экспериментов привёл к построению специальной теории относительности. Предположим, что в классической физике мы движемся за световой волной со скоростью света. Мы будем наблюдать периодически меняющееся в пространстве и постоянное во времени электромагнитное поле. Согласно уравнениям Максвелла, этого быть не может. Отсюда Эйнштейн заключил: либо законы природы меняются при смене системы отсчёта, либо скорость света не зависит от системы отсчёта, и выбрал второй вариант.

Демонстрация возможности

Восьмой тип — демонстрация возможности («главное — показать внутреннюю непротиворечивость возможности»), такого рода модели тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципами и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов — геометрия Лобачевского. (Лобачевский называл её «воображаемой геометрией».) Другой пример — массовое производство формально—кинетических моделей химических и биологических колебаний, автоволн. Парадокс Эйнштейна — Подольского — Розена был задуман как мысленный эксперимент для демонстрации противоречивости квантовой механики, но незапланированным образом со временем превратился в модель 8 типа — демонстрацию возможности квантовой телепортации информации.

В основе содержательной классификации — этапы, предшествующие математическому анализу и вычислениям. Восемь типов моделей по Пайерлсу суть восемь типов исследовательских позиций при моделировании.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m {\displaystyle m} , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x {\displaystyle x} от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука ( F = − k x {\displaystyle F=-kx} ), после чего воспользуемся вторым законом Ньютона, чтобы выразить его в форме дифференциального уравнения:

m x ¨ = − k x {\displaystyle m{\ddot {x}}=-kx} ,

где x ¨ {\displaystyle {\ddot {x}}} означает вторую производную от x {\displaystyle x} по времени: x ¨ = d 2 x d t 2 {\displaystyle {\ddot {x}}={\frac {d^{2}x}{dt^{2}}}} .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором».

По формальной классификации эта модель линейная, детерминистская, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т. д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор — пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Свойства гармонического осциллятора качественно изменяются малыми возмущениями. Например, если добавить в правую часть малое слагаемое − ε x ˙ {\displaystyle -\varepsilon {\dot {x}}} (трение) ( ε > 0 {\displaystyle \varepsilon >0}  — некоторый малый параметр), то получим экспоненциально затухающие колебания, если изменить знак добавочного слагаемого ( ε x ˙ ) {\displaystyle (\varepsilon {\dot {x}})} то трение превратится в накачку и амплитуда колебаний будет экспоненциально возрастать.

Для решения вопроса о применимости жёсткой модели необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Нужно исследовать мягкие модели, получающиеся малым возмущением жёсткой. Для гармонического осциллятора они могут задаваться, например, следующим уравнением:

m x ¨ = − k x + ε f ( x , x ˙ ) {\displaystyle m{\ddot {x}}=-kx+\varepsilon f(x,{\dot {x}})} .

Здесь f ( x , x ˙ ) {\displaystyle f(x,{\dot {x}})}  — некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения. Явный вид функции f {\displaystyle f} нас в данный момент не интересует.

Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований.

Если система сохраняет своё качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор — пример структурно-неустойчивой (негрубой) системы.[20] Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U {\displaystyle U} -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «общей теории систем».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача: структура модели и все её параметры считаются известными, главная задача — провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера, — вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический железнодорожный мост через реку Тей[en], конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.[21]

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

В качестве другого примера можно привести математическую статистику. Задача этой науки — разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений[22]. То есть множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.

Компьютерные системы моделирования

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple, Mathematica, Mathcad, MATLAB, VisSim и др.[23] Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дополнительные примеры

Модель Мальтуса

Согласно модели, предложенной Мальтусом, скорость роста пропорциональна текущему размеру популяции, то есть описывается дифференциальным уравнением:

x ˙ = α x {\displaystyle {\dot {x}}=\alpha x} ,

где α {\displaystyle \alpha }  — некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция x ( t ) = x 0 e α t {\displaystyle x(t)=x_{0}e^{\alpha t}} . Если рождаемость превосходит смертность ( α > 0 {\displaystyle \alpha >0} ), размер популяции неограниченно и очень быстро возрастает. В действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:

x ˙ = α ( 1 − x x s ) x {\displaystyle {\dot {x}}=\alpha \left(1-{\frac {x}{x_{s}}}\right)x} ,

где x s {\displaystyle x_{s}}  — «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s {\displaystyle x_{s}} , причем такое поведение структурно устойчиво.

Система хищник-жертва

Основная статья: Система «хищник-жертва»

Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x {\displaystyle x} , число лис y {\displaystyle y} . Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки — Вольтерры:

{ x ˙ = ( α − c y ) x y ˙ = ( − β + d x ) y {\displaystyle {\begin{cases}{\dot {x}}=(\alpha -cy)x\\{\dot {y}}=(-\beta +dx)y\end{cases}}}

Поведение данной системы не является структурно устойчивым: малое изменение параметров модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения.

При некоторых значениях параметров эта система имеет равновесное состояние, когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к постепенно затухающим колебаниям численности кроликов и лис.

Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерры — Лотки ответа не дает: здесь требуются дополнительные исследования.

ru.wikipedia.org

Что такое модель?

Марина козлова

Моде́ль (фр. modèle, от лат. modulus — «мера, аналог, образец» ) — некоторый материальный или мысленно представляемый объект или явление, являющийся упрощённой версией моделируемого объекта или явления (прототипа) и в достаточной степени повторяющий свойства, существенные для целей конкретного моделирования (опуская несущественные свойства, в которых он может отличаться от прототипа) .

Незнайка

Модель создаётся человеком при изучении окружающего мира и отражает существенные с точки зрения цели проводимого исследования свойства изучаемого объекта, явления или процесса.
Модель используется при решении конкретных задач, когда интересует определённые свойства изучаемого объекта.

Читайте также