Система определение

Система

У этого термина существуют и другие значения, см. Система (значения).

Систе́ма (от др.-греч. σύστημα — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство[1].

Сведение множества к единому — в этом первооснова красоты.

Пифагор

Потребность в использовании термина «система» возникает в тех случаях, когда нужно подчеркнуть, что что-то является большим, сложным, не полностью сразу понятным, при этом целым, единым. В отличие от понятий «множество», «совокупность» понятие системы подчёркивает упорядоченность, целостность, наличие закономерностей построения, функционирования и развития[2].

В повседневной практике слово «система» может употребляться в различных значениях, в частности[3]:

  • теория, например, философская система Платона;
  • классификация, например, Периодическая система химических элементов Д. И. Менделеева;
  • завершённый метод практической деятельности, например, система Станиславского;
  • способ организации мыслительной деятельности, например, система счисления;
  • совокупность объектов природы, например, Солнечная система;
  • некоторое свойство общества, например, политическая система, экономическая система и т. п.;
  • совокупность установившихся норм жизни и правил поведения, например, законодательная система или система моральных ценностей;
  • закономерность («в его действиях прослеживается система»);
  • конструкция («оружие новой системы»);
  • и др.

Изучением систем занимаются такие инженерные и научные дисциплины как теория систем, системный анализ, системология, кибернетика, системная инженерия, термодинамика, ТРИЗ, системная динамика и т. д.

Определения системы

Существует по меньшей мере несколько десятков различных определений понятия «система», используемых в зависимости от контекста, области знаний и целей исследования[2][4]. Основной фактор, влияющий на различие в определениях, состоит в том, что в понятии «система» есть двойственность: с одной стороны оно используется для обозначения объективно существующих феноменов, а с другой стороны — как метод изучения и представления феноменов, то есть как субъективная модель реальности[4].

В связи с этой двойственностью авторы определений пытались решить две различные задачи: (1) как объективно отличить «систему» от «несистемы» и (2) как выделить некоторую систему из окружающей среды. На основе первого подхода давалось дескриптивное (описательное) определение системы, на основе второго — конструктивное, иногда они сочетаются[4].

Так, данное в преамбуле определение из Большого Российского энциклопедического словаря является типичным дескриптивным определением. Другие примеры дескриптивных определений:

  • Система — комплекс взаимодействующих компонентов (Л. фон Берталанфи).[5]
  • Система — совокупность элементов, находящихся в определённых отношениях друг с другом и со средой (Л. фон Берталанфи)[6].
  • Система — множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней, как целое (Ф. И. Перегудов, Ф. П. Тарасенко)[7].

Дескриптивные определения характерны для раннего периода системной науки, при котором в них включали только элементы и связи. Затем, в процессе развития представлений о системе, стали учитывать её цель (функцию), а в последующем — и наблюдателя (лицо, принимающее решение, исследователя, проектировщика и т.п.)[2]. Таким образом, современное представление о системе подразумевает наличие функции, или цели системы с точки зрения наблюдателя или исследователя, который при этом явно или неявно вводится в определение.

Примеры конструктивных определений:

  • Система — комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей (ГОСТ Р ИСО МЭК 15288-2005)[8].
  • Система — конечное множество функциональных элементов и отношений между ними, выделенное из среды в соответствии с определенной целью в рамках определенного временного интервала (В. Н. Сагатовский)[9].
  • Система — отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания (Ю. И. Черняк)[10].
  • Система S на объекте А относительно интегративного свойства (качества) есть совокупность таких элементов, находящихся в таких отношениях, которые порождают данное интегративное свойство (Е. Б. Агошкова, Б. В. Ахлибининский)[11].
  • Система — совокупность интегрированных и регулярно взаимодействующих или взаимозависимых элементов, созданная для достижения определенных целей, причем отношения между элементами определены и устойчивы, а общая производительность или функциональность системы лучше, чем у простой суммы элементов (PMBOK)[3].

При исследовании некоторых видов систем дескриптивные определения системы считаются допустимыми; так, вариант теории систем Ю. А. Урманцева, созданный им для исследования относительно невысоко развитых биологических объектов типа растений, не включает понятие цели как несвойственное для этого класса объектов[2].

Понятия, характеризующие систему

Понятия, входящие в определения системы и характеризующие ее строение[2]:

  • Элемент — предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.
  • Компонент, подсистема — относительно независимая часть системы, обладающая свойствами системы, и в частности, имеющая подцель.
  • Связь, отношение — ограничение степени свободы элементов: элементы, вступая во взаимодействие (связь) друг с другом, утрачивают часть свойств или степеней свободы, которыми они потенциально обладали; сама же система как целое при этом приобретает новые свойства.
  • Структура — наиболее существенные компоненты и связи, которые мало меняются при текущем функционировании системы и обеспечивают существование системы и ее основных свойств. Структура характеризует организованность системы, устойчивую во времени упорядоченность элементов и связей.
  • Цель — сложное понятие, в зависимости от контекста и стадии познания имеющее разное наполнение: «идеальные устремления», «конечный результат», «побуждение к деятельности» и т. д.

Понятия, характеризующие функционирование и развитие системы[2]:

  • Состояние — мгновенная «фотография», «срез» системы; фиксация значений параметров системы на определённый момент времени.
  • Поведение — известные или неизвестные закономерности перехода системы из одного состояния в другое, определяемые как взаимодействием с внешней средой, так и целями самой системы.
  • Развитие, эволюция — закономерное изменение системы во времени, при котором может меняться не только её состояние, но и физическая природа, структура, поведение и даже цель.
  • Жизненный цикл — стадии процесса развития системы, начиная с момента возникновения необходимости в такой системе и заканчивая её исчезновением.

Общесистемные закономерности

  • Отграниченность от среды, интегративность — система есть абстрактная сущность, обладающая целостностью и определенная в своих границах[3], при этом в некотором существенном для наблюдателя аспекте «сила» или «ценность» связей элементов внутри системы выше, чем сила или ценность связей элементов системы с элементами внешних систем или среды. В терминологии В. И. Николаева и В. М. Брука, необходимо наличие существенных устойчивых связей (отношений) между элементами или их свойствами, превосходящих по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему[12]. Системообразующие, системосохраняющие факторы при этом называют интегративными[2].
  • Синергичность, эмерджентность, холизм, системный эффект, сверхаддитивный эффект, целостность — появление у системы свойств, не присущих элементам системы; принципиальная несводимость свойств системы к сумме свойств составляющих её компонентов. Возможности системы превосходят сумму возможностей составляющих её частей; общая производительность или функциональность системы лучше, чем у простой суммы элементов[3].
  • Иерархичность — каждый элемент системы может рассматриваться как система; сама система также может рассматриваться как элемент некоторой надсистемы (суперсистемы). Более высокий иерархический уровень оказывает воздействие на нижележащий уровень и наоборот: подчиненные члены иерархии приобретают новые свойства, отсутствовавшие у них в изолированном состоянии (влияние целого на элементы), а в результате появления этих свойств формируется новый, другой «облик целого» (влияние свойств элементов на целое)[2][13].

Классификации систем

Практически в каждом издании по теории систем и системному анализу обсуждается вопрос о классификации систем, при этом наибольшее разнообразие точек зрения наблюдается при классификации сложных систем. Большинство классификаций являются произвольными (эмпирическими), то есть их авторами просто перечисляются некоторые виды систем, существенные с точки зрения решаемых задач, а вопросы о принципах выбора признаков (оснований) деления систем и полноте классификации при этом даже не ставятся[4].

Классификации осуществляются по предметному или по категориальному принципу.

Предметный принцип классификации состоит в выделении основных видов конкретных систем, существующих в природе и обществе, с учётом вида отображаемого объекта (технические, биологические, экономические и т. п.) или с учётом вида научного направления, используемого для моделирования (математические, физические, химические и др.).

При категориальной классификации системы разделяются по общим характеристикам, присущим любым системам независимо от их материального воплощения[4]. Наиболее часто рассматриваются следующие категориальные характеристики:

  • Количественно все компоненты систем могут характеризоваться как монокомпоненты (один элемент, одно отношение) и поликомпоненты (много свойств, много элементов, много отношений).
  • Для статической системы характерно то, что она находится в состоянии относительного покоя, её состояние с течением времени остается постоянным. Динамическая система изменяет своё состояние во времени.
  • Открытые системы постоянно обмениваются веществом, энергией или информацией со средой. Система закрыта (замкнута), если в неё не поступают и из неё не выделяются вещество, энергия или информация.
  • Поведение детерминированных систем полностью объяснимо и предсказуемо на основе информации об их состоянии. Поведение вероятностной системы определяется этой информацией не полностью, позволяя лишь говорить о вероятности перехода системы в то или иное состояние.
  • В гомогенных системах (например, в популяции организмов данного вида) элементы однородны и потому взаимозаменяемы. Гетерогенные системы состоят из разнородных элементов, не обладающих свойстом взамозаменяемости.
  • Дискретные системы рассматриваются как состоящие из чётко отграниченных (логически или физически) элементов; непрерывные системы рассматриваются с точки зрения закономерностей и процессов. Данные понятия относительны: одна и та же система может быть с одной точки зрения дискретной, а с другой — непрерывной; примером может служить корпускулярно-волновой дуализм.
  • По происхождению выделяют искусственные, естественные и смешанные системы.
  • По степени организованности выделяют класс хорошо организованных, класс плохо организованных (диффузных) систем и класс развивающихся (самоорганизующихся) систем.
  • При делении систем на простые и сложные наблюдается наибольшее расхождение точек зрения, однако чаще всего сложность системе придают такие характеристики как большое число элементов, многообразие возможных форм их связи, множественность целей, многообразие природы элементов, изменчивость состава и структуры и т. д.[4]

Одна из известных эмпирических классификаций предложена Ст. Биром[14]. В её основе лежит сочетание степени детерминированности системы и уровня её сложности:

Системы Простые(состоящие из небольшого числа элементов) Сложные(достаточно разветвленные, но поддающиеся описанию) Очень сложные(не поддающиеся точному и подробному описанию)
Детерминированные Оконная задвижка
Проект механических мастерских
Компьютер
Автоматизация
Вероятностные Подбрасывание монеты
Движение медузы
Статистический контроль качества продукции
Хранение запасов
Условные рефлексы
Прибыль промышленного предприятия
Экономика
Мозг
Фирма

Несмотря на явную практическую ценность классификации Ст. Бира отмечаются и её недостатки. Во-первых, критерии выделения типов систем не определены однозначно. Например, выделяя сложные и очень сложные системы, автор не указывает, относительно каких именно средств и целей определяется возможность и невозможность точного и подробного описания. Во-вторых, не показывается, для решения каких именно задач оказывается необходимым и достаточным знание именно предложенных типов систем. Такие замечания в сущности характерны для всех произвольных классификаций[4].

Помимо произвольных (эмпирических) подходов к классификации существует и логико-теоретический подход, при котором признаки (основания) деления пытаются логически вывести из определения системы. В данном подходе множество выделяемых типов систем потенциально неограниченно, порождая вопрос о том, каков объективный критерий для выделения из бесконечного множества возможностей наиболее подходящих типов систем[4].

В качестве примера логического подхода можно сослаться на предложение А. И. Уёмова на основе его определения системы, включающего «вещи», «свойства» и «отношения» строить классификации систем на основе «типов вещей» (элементов, из которых состоит система), «свойств» и «отношений», характеризующих системы различного вида[15].

Предлагаются и комбинированные (гибридные) подходы, которые призваны преодолеть недостатки обоих подходов (эмпирического и логического). В частности, В. Н. Сагатовский предложил следующий принцип классификации систем. Все системы делятся на разные типы в зависимости от характера их основных компонентов. При этом каждый из указанных компонентов оценивается с точки зрения определенного набора категориальных характеристик. В результате из полученной классификации выделяются те типы систем, знание которых наиболее важно с точки зрения определенной задачи[9].

Классификация систем В. Н. Сагатовского:

Категориальные характеристики Свойства Элементы Отношения
Моно
Поли
Статические
Динамические (функционирующие)
Открытые
Закрытые
Детерминированные
Вероятностные
Простые
Сложные

Закон необходимости разнообразия (закон Эшби)

При создании проблеморазрешающей системы необходимо, чтобы эта система имела большее разнообразие, чем разнообразие решаемой проблемы, или была способна создать такое разнообразие. Иначе говоря, система должна обладать возможностью изменять своё состояние в ответ на возможное возмущение; разнообразие возмущений требует соответствующего ему разнообразия возможных состояний. В противном случае такая система не сможет отвечать задачам управления, выдвигаемым внешней средой, и будет малоэффективной. Отсутствие или недостаточность разнообразия могут свидетельствовать о нарушении целостности подсистем, составляющих данную систему.

Общая теория систем

Основная статья: Общая теория систем

Общая теория систем — научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов.

Первый вариант общей теории систем был выдвинут Людвигом фон Берталанфи. Его основная идея состояла в признании изоморфизма законов, управляющих функционированием системных объектов[16].

Современные исследования в общей теории систем должны интегрировать наработки, накопленные в областях «классической» общей теории систем, кибернетики, системного анализа, исследования операций, системной инженерии и т.д.

ru.wikipedia.org

Определение системы

Тема №1. Системы и закономерности их функционирования и развития.

Понятие о системе.

Определение системы.

Термин «система» используют в тех случаях, когда хотят охарактеризовать исследуемый или проектируемый объект как нечто целое (единое), сложное, о котором невозможно сразу дать представление, показав его, изобразив графически или описав математическим выражением.

Существует несколько десятков определений понятия «система». Их анализ показывает, что по мере развития теории систем и использования этого понятия на практике определение понятия «система» изменялось не только по форме, но и по содержанию.

В первых определениях в той или иной форме говорилось о том, что система – это элементы (части, компоненты) и связи между ними. Так, Берталанфи определил систему, как «комплекс взаимодействующих компонентов» или как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой».

В Большой Советской Энциклопедии система определяется прямым переводом с греческого слова (состав), т. е. составленное, соединенное из частей.

Затем в определениях системы появляется цель. Вначале – в неявном виде в определении Темникова «система – организованное множество» (в котором цель появляется при раскрытии понятия «организованное»). Потом – в виде конечного результата, системообразующего критерия, а позднее - и с явным упоминанием о цели.

В некоторых определениях уточняются условия целеобразвоания – среда, интервал времени, т. е. период, в рамках которого будет существовать система, и ее цели.

Например, определение Сагатовского: система – «конечное множество функциональных элементов и отношений между ними, выделенное из среды в соответствии с определенной целью в рамках определенного временного интервала».

Далее в определение системы начинают включать, наряду с элементами, связями и целями, наблюдателя, т. е. лицо, представляющее объект или процесс в виде системы при исследовании или принятии решения.

Первое определение, в которое в явном виде включен наблюдатель, дал Черняк: «Система есть отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания».

В последующих вариантах этого определения Черняк стал учитывать и язык наблюдателя: «система есть отображение на языке наблюдателя (исследователя, конструктора) объектов, отношений и их свойств в решении задачи исследования, познания».

Вообще в определениях системы бывает и большее число составляющих.

Сопоставляя эволюцию определения системы (элементы и связи, затем – цель, затем - наблюдатель) и эволюцию использования категорий теории познания в исследовательской деятельности, можно обнаружить сходство: вначале модели (особенно формальные) базировались на учете только элементов и связей, взаимодействий между ними, затем – стали уделять внимание цели, поиску методов ее формализованного представления (целевая функция, критерий функционирования и т. п.), а, начиная с 60-х годов прошлого века, все большее внимание обращают на наблюдателя, лицо, осуществляющее моделирование или проводящее эксперименты, т. е. лицо, принимающее решение (ЛПР).

С учетом этого и опираясь на более глубокий анализ сущности понятия «система», рассматриваемый ниже, следует, по-видимому, относиться к этому понятию как к категории теории познания.В связи с этим интересно обратить внимание на вопрос о материальности или нематериальности системы, рассматриваемый далее.

В различных конкретных ситуациях можно пользоваться различными определениями. Причем, по мере уточнения представлений о системе или переходе на другой уровень (страту) ее исследования определение системы не только может, но и должно уточняться.

Более полное определение, включающее и элементы, и связи, и цель, и наблюдателя, а иногда и его «язык» отображения системы, помогает поставить задачу, наметить основные этапы методики системного анализа. Например, в социальных системах, если не определить лицо, компетентное принимать решения, то можно и не достичь цели, ради которой создается система. Но есть системы, для которых наблюдатель очевиден. Иногда не нужно даже в явном виде использовать понятие цели (например, вариант теории систем Урманцева, созданный им для исследования относительно невысоко развитых биологических объектов типа растений, не включает понятие цели как не свойственно для этого класса объектов, а понятие целесообразности развития отражает в форме «закон композиции»).

При проведении системного анализа можно вначале отобразить ситуацию с помощью как можно более полного определения системы, а затем, выделив наиболее существенные компоненты, влияющие на принятие решения, сформулировать «рабочее» определение, которое может уточняться, расширяться или сужаться в зависимости от хода анализа.

Выбор определения отражает принимаемую концепцию исследуемой или создаваемой системы и является фактически началом ее моделирования, т. е. помогает исследователю или разработчику начать ее описание.

studopedia.ru

Система это:

Система (от греч. systema — целое, составленное из частей; соединение) множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство. Претерпев длительную историческую эволюцию, понятие С. с середины 20 в. становится одним из ключевых философско-методологических и специально-научных понятий. В современном научно-техническом знании разработка проблематики, связанной с исследованием и конструированием С. разного рода, проводится в рамках системного подхода (См. Системный подход), общей теории С., различных специальных теорий С., в кибернетике, системотехнике (См. Системотехника), системном анализе (См. Системный анализ) и т. д.          Первые представления о С. возникли в античной философии, выдвинувшей онтологическое истолкование С. как упорядоченности и целостности бытия. В древнегреческой философии и науке (Евклид, Платон, Аристотель, стоики) разрабатывалась идея системности знания (аксиоматическое построение логики, геометрии). Воспринятые от античности представления о системности бытия развивались как в системно-онтологических концепциях Б. Спинозы и Г. Лейбница, так и в построениях научной систематики. 17—18 вв., стремившейся к естественной (а не телеологической) интерпретации системности мира (например, классификация К. Линнея). В философии и науке нового времени понятие С. использовалось при исследовании научного знания; при этом спектр предлагаемых решений был очень широк — от отрицания системного характера научно-теоретического знания (Э. Кондильяк) до первых попыток философского обоснования логико-дедуктивной природы систем знания (И. Г. Ламберт и др.).          Принципы системной природы знания разрабатывались в нем. классической философии: согласно И. Канту, научное знание есть С., в которой целое главенствует над частями; Ф. Шеллинг и Г. Гегель трактовали системность познания как важнейшее требование диалектического мышления. В буржуазной философии 2-й половины 19—20 вв. при общем идеалистическом решении основного вопроса философии содержатся, однако, постановки, а в отдельных случаях и решения некоторых проблем системного исследования — специфики теоретического знания как С. (Неокантианство), особенностей целого (Холизм, Гештальтпсихология), методов построения логических и формализованных систем (Неопозитивизм).          Общефилософской основой исследования С. являются принципы материалистической диалектики (всеобщей связи явлений, развития, противоречия и др.). Труды К. Маркса, Ф. Энгельса, В. И. Ленина содержат богатейший материал по философской методологии изучения С. — сложных развивающихся объектов (см. в ст. Системный подход).          Для начавшегося со 2-й половины 19 в. проникновения понятия С. в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч. Дарвина, теории относительности, квантовой физики, структурной лингвистики и др. Возникла задача построения строгого определения понятия С. и разработки оперативных методов анализа С. Интенсивные исследования в этом направлении начались только в 40—50-х гг. 20 в., однако многие конкретно-научные принципы анализа С. уже были сформулированы ранее в тектологии А. А. Богданова, в работах В. И. Вернадского (См. Вернадский), в праксеологии Т. Котарбиньского (См. Котарбиньский) и др. Предложенная в конце 40-х гг. Л. Берталанфи программа построения «общей теории систем» явилась одной из первых попыток обобщённого анализа системной проблематики. Дополнительно к этой программе, тесно связанной с развитием кибернетики, в 50—60-е гг. был выдвинут ряд общесистемных концепций и определений понятия С. (в США, СССР, Польше, Великобритании, Канаде и других странах).          При определении понятия С. необходимо учитывать теснейшую взаимосвязь его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие С. имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как С.), постольку его достаточно полное понимание предполагает построение семейства соответствующих определений — как содержательных, так и формальных. Лишь в рамках такого семейства определений удаётся выразить основные системные принципы: целостности (принципиальная несводимость свойств С. к сумме свойств составляющих её элементов и невыводимость из последних свойств целого; зависимость каждого элемента, свойства и отношения С. от его места, функций и т. д. внутри целого), структурности (возможность описания С. через установление её структуры, т. е. сети связей и отношений С.; обусловленность поведения С. поведением её отдельных элементов и свойствами её структуры), взаимозависимости С. и среды (С. формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия), иерархичности (каждый компонент С. в свою очередь может рассматриваться как С., а исследуемая в данном случае С. представляет собой один из компонентов более широкой С.), множественности описания каждой С. (в силу принципиальной сложности каждой С. её адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определённый аспект С.) и др.          Существенным аспектом раскрытия содержания понятия С. является выделение различных типов С. (при этом разные типы и аспекты С. — законы их строения, поведения, функционирования, развития и т. д. — описываются в соответствующих специализированных теориях систем). Предложен ряд классификаций С., использующих разные основания. В наиболее общем плане С. можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на С. неорганической природы (физические, геологические, химические и др.) и живые С., куда входят как простейшие биологические С., так и очень сложные биологические объекты типа организма, вида, экосистемы. Особый класс материальных живых С. образуют социальные С., чрезвычайно многообразные по своим типам и формам (начиная от простейших социальных объединений и вплоть до социально-экономической структуры общества). Абстрактные С. являются продуктом человеческого мышления; они также могут быть разделены на множество различных типов (особые С. представляют собой понятия, гипотезы, теории, последовательная смена научных теорий и т. д.). К числу абстрактных С. относятся и научные знания о С. разного типа, как они формулируются в общей теории С., специальных теориях С. и др. В науке 20 в. большое внимание уделяется исследованию языка как С. (лингвистические С.); в результате обобщения этих исследований возникла общая теория знаков — семиотика. Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализованных, логических С. (металогпка, метаматематика). Результаты этих исследований широко применяются в кибернетике, вычислительной технике и др.          При использовании других оснований классификации С. выделяются статичные и динамичные С. Для статичной С. её состояние с течением времени остаётся постоянным (например, газ в ограниченном объёме — в состоянии равновесия). Динамичная С. изменяет своё состояние во времени (например, живой организм). Если знание значений переменных С. в данный момент времени позволяет установить состояние С. в любой последующий или любой предшествующий моменты времени, то такая С. является однозначно детерминированной. Для вероятностной (стохастической) С. знание значений переменных в данный момент времени позволяет только предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношения С. и среды С. делятся на закрытые — замкнутые (в них не поступает и из них не выделяется вещество, происходит лишь обмен энергией) и открытые — незамкнутые (постоянно происходят ввод и вывод не только энергии, но и вещества). По второму закону термодинамики, каждая закрытая С. в конечном счёте достигает состояния равновесия, при котором остаются неизменными все макроскопические величины С. и прекращаются все макроскопические процессы (состояние максимальной энтропии и минимальной свободной энергии). Стационарным состоянием открытой С. является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но непрерывно продолжаются макроскопические процессы ввода и вывода вещества. Поведение названных классов С. описывается с помощью дифференциальных уравнений, задача построения которых решается в математической теории С.          Современная научно-техническая революция привела к необходимости разработки и построения автоматизированных С. управления народным хозяйством (промышленностью, транспортом и т. д.), автоматизированных С. сбора и обработки информации в национальном масштабе и т. д. Теоретические основы для решения этих задач разрабатываются в теориях иерархических, многоуровневых С., целенаправленных С. (в своём функционировании стремящихся к достижению определённых целей), самоорганизующихся систем (См. Самоорганизующаяся система) (способных изменять свою организацию, структуру) и др. Сложность, многокомпонентность, стохастичность и др. важнейшие особенности современных технических С. потребовали разработки теорий систем «человек и машина» (См. Система человек и машина), сложных систем (См. Сложная система), системотехники, системного анализа.          В процессе развития системных исследований в 20 в. более четко были определены задачи и функции разных форм теоретического анализа всего комплекса системных проблем. Основная задача специализированных теорий С. — построение конкретно-научного знания о разных типах и разных аспектах С., в то время как главные проблемы общей теории С. концентрируются вокруг логико-методологических принципов системного исследования, построения метатеории анализа С. В рамках этой проблематики существенное значение имеет установление методологических условий и ограничений применения системных методов. К числу таких ограничений относятся, в частности, т. н. системные парадоксы, например парадокс иерархичности (решение задачи описания любой данной С. возможно лишь при условии решения задачи описания данной С. как элемента более широкой С., а решение последней задачи возможно лишь при условии решения задачи описания данной С. как С.). Выход из этого и аналогичных парадоксов состоит в использовании метода последовательных приближений, позволяющего путём оперирования неполными и заведомо ограниченными представлениями о С. постепенно добиваться более адекватного знания об исследуемой С. Анализ методологических условий применения системных методов показывает как принципиальную относительность любого, имеющегося в данный момент времени описания той или иной С., так и необходимость использования при анализе любой С. всего арсенала содержательных и формальных средств системного исследования.          Лит.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; 26, ч. 2; т. 46, ч. 1; Ленин В. И., Полн. собр. соч., 5 изд., т. 18, 29; Хайлов К. М., Проблема системной организованности в теоретической биологии, «Журнал общей биологии», 1963, т. 24, № 5; Ляпунов А. А., Об управляющих системах живой природы, в сборнике: О сущности жизни, М., 1964; Щедровицкий Г. П., Проблемы методологии системного исследования, М., 1964; Вир Ст., Кибернетика н управление производством, пер. с англ., М., 1965; Проблемы формального анализа систем. [Сб. ст.], М., 1968; Холл А. Д., Фейджин Р. Е., Определение понятия системы, в сборнике: Исследования по общей теории систем, М., 1969; Месарович М., Теория систем и биология: точка зрения теоретика, в кн.: Системные исследования. Ежегодник. 1969, М., 1969; Малиновский А. А., Пути теоретической биологии, М., 1969; Рапопорт А., Различные подходы к общей теории систем, в кн.: Системные исследования. Ежегодник. 1969, М., 1969; Уемов А. И., Системы и системные исследования, в кн.: Проблемы методологии системного исследования, М., 1970; Шрейдер Ю. А., К определению системы, «Научно-техническая информация. Серия 2», 1971, №7; Огурцов А. П., Этапы интерпретации системности знания, в кн.: Системные исследования. Ежегодник. 1974, М., 1974; Садовский В. Н., Основания общей теории систем, М., 1974; Урманцев Ю. А., Симметрия природы и природа симметрии, М., 1974; Bertalanffy L. von, An outline of general system theory, «British Journal for the Philosophy of Science», 1950, v. I, № 2; Systems: research and design, ed. by D. P. Eckman, N. Y. — L., [1961]; Zadeh L. A., Polak Е., System theory, N. Y., 1969; Trends in general systems theory, ed. by G. J. Klir, N. Y., 1972; Laszlo Е., Introduction to systems philosophy, N. Y., 1972; Unity through diversity, ed. by W. Gray and N. D. Rizzo, v. 1—2, N. Y., 1973.          См. также лит. при ст. Системный анализ, Системный подход.          В. Н. Садовский.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

dic.academic.ru

Понятие системы

В литературе существует несколько десятков определений системы. Наиболее общим является определение, приведенное в [2]: «Система есть средство достижения цели». Но нужно иметь еще представление о том, что это за средство, как оно устроено. Поэтому предполагают, что система состоит из большого числа взаимосвязанных и взаимодействующих между собой и с окружающей средой отдельных частей системы. Однако, совокупность, состоящая из большого числа изолированных объектов, не является системой.

Прежде, чем давать другие определения системы, рассмотрим ряд понятий, не отделимых от системы.

Цель – это состояние, к которому направлена тенденция движения системы [3].

Состояние системы – это некая изображающая точка в пространстве состояний системы при определенных значениях параметров системы.

Пространство состояний системы – это n-мерное (по числу параметров системы) пространство, в котором функционирует система.

Функционирование системы – это переход из одного состояния в другое или сохранение какого-либо состояния в течение некоторого промежутка времени. Следовательно, функционирование (функцию) системы можно представить как движение изображающей точки в пространстве состояний, причем покой – это одна из форм движения – сохранение состояния (рис. 1.1).

N1

b

a

N3

N2

Рисунок 1.1.

Если состояния системы изменяются за счет внутренних процессов или из-за внешних влияний, то такая система называется динамической.

Системы, в которых возможны любые состояния в пределах допустимой области (состояний), характеризуются непрерывным пространством состояний.

Системы, в которых возможно лишь конечное число состояний, называются дискретными и характеризуются дискретным пространством состояний.

Если рассматривать изменения состояний системы в функции времени, то это приведет к необходимости исследования траекторий в m-мерном пространстве. Иногда эти траектории называют линиями поведения.

Функция системы – есть ее свойство в динамике, приводящее к достижению цели или способ достижения системой заданной цели.

В зависимости от решаемой задачи – анализа или синтеза, существует еще два определения системы: дискриптивное и конструктивное [3].

а) Дискриптивное (описательное) определение: система – есть совокупность объектов, свойство которой определяется отношениями между этими объектами (обычно их называют элементами). Этим определением пользуется исследователь, решающий задачу анализа.

б) Конструктивное определение системы: система – есть конкретное множество функциональных элементов и отношений между ними, выделяемое из среды в соответствии с определенной целью в рамках определенного временного интервала.

Этим определением пользуются при решении задачи синтеза, т.е. когда создается новая система.

В основе определения лежит функционально-целевой подход: свойство объекта рассматривается как функция, если оно используется для достижения определенной цели.

  1. Структура сложных систем

Структура системы – это совокупность функциональных составляющих системы и их отношений, необходимых и достаточных для достижения системой заданной цели.

Функциональные составляющие, приведенные в определении структуры системы, носят названия: подсистемы и элементы.

Элемент (в формализованной схеме системы) – это объект (часть системы), не подлежащий (при данном рассмотрении системы) дальнейшему разбиению на части. Внутренняя структура элемента при этом не является предметом изучения. Должны быть известны только те свойства элемента, которые определяют его взаимодействие с другими элементами системы и оказывают влияние на свойства системы в целом.

Подсистема – совокупность элементов системы вместе со связями между ними. Подсистемы могут быть разных рангов (уровней). Выделение подсистем является важным этапом при построении формального описания сложной системы. Оно позволяет иногда упростить исследование сложной системы, т.к. уменьшается число связей в системе и, следовательно, громоздкость исследований. С другой стороны, переход от системы к подсистемам ведет к новому множеству связей. Подсистемы сложной системы сами могут быть сложными системами. Поэтому с формальной точки зрения сущность подсистемы двойственна: с одной стороны она является системой, состоящей из некоторого числа элементов, а с другой – представляет собой элемент сложной системы.

Таким образом, деление системы весьма условно и зависит от уровня, на котором рассматривается система. То есть процесс расчленения системы может продолжаться до тех пор, пока дальнейшее разбиение окажется нецелесообразным. Число подсистем и их порядок может быть любым. Важно лишь, чтобы подсистемы, действующие совместно, обеспечивали выполнение всех функций следующей, высшей по уровню подсистемы. Цель высшей подсистемы – влиять на низшие таким образом, чтобы достигалась общая цель, заданная для всей системы.

Таким образом, сложные системы имеют, как правило, иерархическую структуру, формализованный вид которой приведен на рис. 1.2.

Иерархическая структура системы позволяет вести независимое проектирование подсистем и организовать их независимое производство.

Иерархические структуры бывают идеальные и неидеальные. Идеальные иерархические структуры должны иметь пять признаков:

  1. Многоуровневость (этажность);

  2. Ветвистость;

  3. Пирамидальность;

  4. Субординация внутренних связей;

  5. Субординация внешних связей, которые контролируются верхними подсистемами.

Подсистемы

1-го ранга

(уровня)

Подсистемы

2-го ранга

Подсистемы

m-го ранга

Элементы

Рисунок 1.2.

Наиболее просто достигается цель в идеальной иерархии. Но, как правило, идеальных иерархий, из-за различного рода нарушений, не бывает.

Структуры некоторых сложных систем могут быть не иерархичными, т.е. не пирамидальными, а линейными (радиоприемник, автомобиль и т.п.).

Для представления структур удобно использовать теорию графов. «Язык структуры систем – графические модели» (У. Дж. Бендер [9]).

Главный признак, по которому классифицируются структуры из-за их многообразия – это количество и характер связей между элементами.

В определении структуры применен термин «отношения». Отношения могут быть временными, пространственными и типа связи. Термин «связь» используется в случае взаимосвязанных объектов, когда изменения одного объекта приводят к изменениям другого. В случае если объекты не приводят к изменению друг друга, используется более общий термин «отношение». Так в системе существуют взаимосвязанные элементы и могут быть не взаимосвязанные элементы, между которыми имеются отношения (например, пространственные).

Связи могут быть информационные, энергетические и вещественные.

Вещественные связи – это каналы, по которым передаются какие-либо вещества. Например, в производственных системах – сырье, полуфабрикаты и т.п.

Энергетические связи – это каналы, по которым передается тот или иной вид энергии: механической, электрической, тепловой и т.п.

Информационные связи – это каналы, по которым передается та или иная информация: команды управления, различного рода сообщения и т.п.[4].

Связи бывают: направленные и ненаправленные, односторонние и двухсторонние, симметричные и несимметричные.

Необходимо отметить еще два вида структур систем: формальную (логическую) и материальную [3].

Формальная структура. Ее определение совпадает с определением структуры, приведенной выше.

Материальная структура – это реальное наполнение формальной структуры, одна из ее возможных реализаций.

Всегда следует иметь в виду, что:

1. Фиксированной цели соответствует одна и только одна формальная структура системы;

2. Одной формальной структуре может соответствовать множество материальных структур систем.

Формальная структура оказывается единственной, поскольку она определяется поставленной целью.

Множественность материальных структур определяется уровнем развития техники: на каждом уровне свои материальные структуры.

StudFiles.ru

Что означает понятие система?

Солнце

Систе́ма (от др. -греч. σύστημα — «сочетание» ) — множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней, как целое [1].

В системном анализе используют различные определения понятия «система» . В частности, по В. Н. Сагатовскому, система — это конечное множество функциональных элементов и отношений между ними, выделенное из среды в соответствии с определенной целью в рамках определенного временного интервала [2]. Согласно Ю. И. Черняку, система есть отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания [3][4]. Известно также большое число других определений понятия «система» , используемых в зависимости от контекста, области знаний и целей исследования [5][6].

Термин «система» обозначает как реальные, так и абстрактные объекты и широко используется для образования других понятий, например банковская система, информационная система, кровеносная система, политическая система, система уравнений и др.

Любой неэлементарный объект можно рассмотреть как подсистему целого (к которому рассматриваемый объект относится) , выделив в нём отдельные части и определив взаимодействия этих частей, служащих какой-либо функции.

Изучением систем занимаются системология, кибернетика, системный анализ, теория систем, термодинамика, ТРИЗ, системная динамика и другие научные дисциплины

Читайте также