Статистика определение

СТАТИСТИКА это:

СТАТИСТИКА СТАТИСТИКА (греч. statizein - доказывать). Наука, имеющая целью показание нравственных и материальных сил народа, состояние его в данную пору, источники и размеры земледельческого и промышленного производств и т. п., на основании цифровых данных.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н., 1910.

СТАТИСТИКА [англ. statistics < лат. status - состояние] - 1) наука, занимающаяся сбором, исследованием и публикацией количественных данных об изменениях в развитии общества и отраслей хозяйства; 2) метод количественных исследований.

Словарь иностранных слов.- Комлев Н.Г., 2006.

СТАТИСТИКА в широком смысле слова фактические численные сведения, относящиеся к самым разнообразным отраслям знания и добываемые преимущ. путем систематического наблюдения; так, существует статистика населения, пожаров, градобитий и т. п.

Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф., 1907.

СТАТИСТИКА наука, излагающая способы правильного количественного наблюдения над очень большим числом явлений с целью сделать в последствии из собранного сырого цифрового материала те или иные выводы; так же называют ряд цифр, освещающих данный вопрос с к.-н. точки зрения, нпр., статистика народонаселения, смертности, браков, рождений, преступлений; статистика потребления, производства, торговли и т. д.

Полный словарь иностранных слов, вошедших в употребление в русском языке.- Попов М., 1907.

СТАТИСТИКА новолатинск., от лат. status, государство. Изучение сил государства и их проявления в данное время.

Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.- Михельсон А.Д., 1865.

стати́стика (лат. status состояние) 1) наука, обрабатывающая и изучающая количественные показатели развития общественного производства и общества, их соотношения н изменения; 2) количественный учет массовых явлений; 3) математическая с. - раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов; 4) демографическая с. - статистика населения-область статистики, занимающаяся приложением статистических методов к анализу данных о численности, составе, размещении и движении населения.

Новый словарь иностранных слов.- by EdwART, , 2009.

статистика статистики, мн. нет, ж. [от англ. statistics, букв. сведения о государстве, с латин.]. 1. Наука, изучающая количественные изменения в развитии человеческого общества и народного хозяйства. || Количественный учет всякого рода массовых случаев. 2. Первонач. наука о государстве (о народонаселении, строе, экономике; устар.).

Большой словарь иностранных слов.- Издательство «ИДДК», 2007.

статистика и, мн. нет, ж. (нем. Statistik греч. statos стоящий; стоячий, неподвижный).
1. Наука о количественных измерениях в развитии общества и экономики.
2. Количественный учет всякого рода массовых случаев, явлений. С. рождаемости.
3. Научный метод количественных исследований в нек-рых областях знаний. Математическая с.
Статистик — специалист в области статистики 1-3.
Статистический — относящийся к статистике 1-3.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык, 1998.


.

dic.academic.ru

Статистика это:

Статистика Гистограмма (метод графических изображений) У этого термина существуют и другие значения, см. Статистика (значения).

Стати́стика — отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных) данных; изучение количественной стороны массовых общественных явлений в числовой форме[1].

Слово «статистика» происходит от латинского status — состояние дел[2]. В науку термин «статистика» ввел немецкий ученый Готфрид Ахенвалль в 1746 году, предложив заменить название курса «Государствоведение», преподававшегося в университетах Германии, на «Статистику», положив тем самым начало развитию статистики как науки и учебной дисциплины. Несмотря на это, статистический учёт вёлся намного раньше: проводились переписи населения в Древнем Китае, осуществлялось сравнение военного потенциала государств, вёлся учёт имущества граждан в Древнем Риме и т. п[3].

Статистика разрабатывает специальную методологию исследования и обработки материалов: массовые статистические наблюдения, метод группировок, средних величин, индексов, балансовый метод, метод графических изображений и другие методы анализа статистических данных.

Содержание

  • 1 Развитие представлений о статистике
  • 2 Краткая история статистических методов
  • 3 Статистические методы
    • 3.1 Классификация статистических методов
  • 4 Прикладная статистика
    • 4.1 Статистический анализ конкретных данных
    • 4.2 Перспективы развития
  • 5 Вычислительная статистика
  • 6 Некорректная интерпретация статистических исследований
  • 7 Крылатая фраза
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Развитие представлений о статистике

Начало статистической практики относится примерно ко времени возникновения государства. Первой опубликованной статистической информацией можно считать глиняные таблички Шумерского царства (III — II тысячелетия до н. э.).

Вначале под статистикой понимали описание экономического и политического состояния государства или его части. Например, к 1792 году относится определение: «статистика описывает состояние государства в настоящее время или в некоторый известный момент в прошлом». И в настоящее время деятельность государственных статистических служб вполне укладывается в это определение[4].

Однако постепенно термин «статистика» стал использоваться более широко. По Наполеону Бонапарту, «статистика — это бюджет вещей»[5]. Тем самым статистические методы были признаны полезными не только для административного управления, но и для применения на уровне отдельного предприятия. Согласно формулировке 1833 года, «цель статистики заключается в представлении фактов в наиболее сжатой форме»[6]. Во 2-й половине XIX — начале XX веков сформировалась научная дисциплина — математическая статистика, являющаяся частью математики.

В XX веке статистику часто рассматривают прежде всего как самостоятельную научную дисциплину. Статистика есть совокупность методов и принципов, согласно которым проводится сбор, анализ, сравнение, представление и интерпретация числовых данных. В 1954 г. академик АН УССР Б. В. Гнеденко дал следующее определение: «Статистика состоит из трёх разделов:

  1. сбор статистических сведений, то есть сведений, характеризующих отдельные единицы каких-либо массовых совокупностей;
  2. статистическое исследование полученных данных, заключающееся в выяснении тех закономерностей, которые могут быть установлены на основе данных массового наблюдения;
  3. разработка приёмов статистического наблюдения и анализа статистических данных. Последний раздел, собственно, и составляет содержание математической статистики»[7].

Термин «статистика» употребляют ещё в двух смыслах. Во-первых, в обиходе под «статистикой» часто понимают набор количественных данных о каком-либо явлении или процессе. Во-вторых, статистикой называют функцию от результатов наблюдений, используемую для оценки характеристик и параметров распределений и проверки гипотез.

Краткая история статистических методов

Типовые примеры раннего этапа применения статистических методов описаны в Библии, в Ветхом Завете. Там, в частности, приводится число воинов в различных племенах. С математической точки зрения дело сводилось к подсчёту числа попаданий значений наблюдаемых признаков в определённые градации.

Сразу после возникновения теории вероятностей (Паскаль, Ферма, XVII век) вероятностные модели стали использоваться при обработке статистических данных. Например, изучалась частота рождения мальчиков и девочек, было установлено отличие вероятности рождения мальчика от 0.5, анализировались причины того, что в парижских приютах эта вероятность не та, что в самом Париже, и т. д.

В 1794 г. (по другим данным — в 1795 г.) немецкий математик Карл Гаусс формализовал один из методов современной математической статистики — метод наименьших квадратов[8]. В XIX веке значительный вклад в развитие практической статистики внёс бельгиец Кетле, на основе анализа большого числа реальных данных показавший устойчивость относительных статистических показателей, таких, как доля самоубийств среди всех смертей[9].

Первая треть ХХ века прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Разработанную в первой трети ХХ века теорию анализа данных называют параметрической статистикой, поскольку её основной объект изучения — это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее общим является семейство кривых Пирсона, задаваемых четырьмя параметрами. Как правило, нельзя указать каких-либо веских причин, по которым распределение результатов конкретных наблюдений должно входить в то или иное параметрическое семейство. Исключения хорошо известны: если вероятностная модель предусматривает суммирование независимых случайных величин, то сумму естественно описывать нормальным распределением; если же в модели рассматривается произведение таких величин, то итог, видимо, приближается логарифмически нормальным распределением и так далее.

Статистические методы

Статисти́ческие ме́тоды — методы анализа статистических данных. Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надёжность и испытания, планирование экспериментов.

Классификация статистических методов

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учёта специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика

Прикладная статистика — это наука о том, как обрабатывать данные произвольной природы. Математической основой прикладной статистики и статистических методов анализа является теория вероятностей и математическая статистика.

Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

В простейшей ситуации статистические данные — это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат — числа, а часть — качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы — образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечёткие множества и т. д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных — числовые и нечисловые. Соответственно прикладная статистика разбивается на две части — числовую статистику и нечисловую статистику.

Числовые статистические данные — это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки — это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные — это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечёткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. [2]).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определённого момента времени, то получаем так называемые цензурированные данные, состоящие из набора чисел — продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Статистический анализ конкретных данных

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Перспективы развития

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

Вычислительная статистика

Развитие вычислительной техники во второй половине XX века оказало значительное влияние на статистику. Ранее статистические модели были представлены преимущественно линейными моделями. Увеличение быстродействия ЭВМ и разработка соответствующих численных алгоритмов послужило причиной повышенного интереса к нелинейным моделям таким, как искусственные нейронные сети, и привело к разработке сложных статистических моделей, например обобщённая линейная модель и иерархическая модель.

Получили широкое распространение вычислительные методы, основанные на повторной выборке как критерий перестановок и бутстреппинг, наряду методы как семплирование по Гиббсу позволили более доступно использовать байесовские алгоритмы. В настоящее время существует разнообразное статистическое программное обеспечение общего и специализированного назначения.

Некорректная интерпретация статистических исследований

Бытует мнение, что данные статистических исследований всё чаще намеренно искажают или неправильно интерпретируют, выбирая только те данные, которые являются благоприятными для ведущего конкретное исследование[10]. Неправильное использование статистических данных может быть как случайным, так и преднамеренным. В книге Хаффа и Даррелла (1954) «Как обмануть с помощью статистики?» (англ. How to Lie With Statistics) излагается ряд соображений по поводу использования и неправильного применения статистических данных. Некоторые авторы также проводят обзор статистических методов, используемых в определённых областях (например, Варн, Лазо, Рамос, и Риттер (2012))[11]. Способы, позволяющие избежать неправильного толкования статистических данных включают в себя использование надлежащей схемы и исключение предвзятости при проведении исследований[12]. Злоупотребление происходит тогда, когда такие выводы «заказываются» определёнными структурами, которые намеренно или бессознательно выводят на отбор предвзятых данных или проб[13]. При этом гистограммы, как самый простой для использования и понимания (восприятия) вид диаграммы, могут быть сделаны либо с применением обычных программ для компьютера или просто нарисованы[12]. К сожалению, большинство людей не делают попыток искать ошибки или заблуждаются сами, поэтому и не видят ошибок. Таким образом, по мнению авторов, статистические данные, чтобы быть правдой, должны быть «не причёсаны» (то есть достоверные данные не должны выглядеть идеальными)[13]. Для того, чтобы полученные статистические данные оказались правдоподобными и точными, проба должна быть репрезентативной в целом[14].

Крылатая фраза

«Существуют три вида обмана: ложь, наглая ложь и статистика», англ. There are three kinds of lies: lies, damned lies, and statistics) — высказывание, приписываемое премьер-министру Великобритании Бенджамину Дизраэли, а известность оно получило благодаря Марку Твену после публикации «Главы моей автобиографии» в журнале North American Review 5 июля 1907 года[15]: «Цифры обманчивы, — писал он, — я убедился в этом на собственном опыте; по этому поводу справедливо высказался Дизраэли: „Существует три вида лжи: ложь, наглая ложь и статистика“». Однако этой фразы нет в работах Дизраэли. Также она не была известна ни при его жизни, ни вскоре после смерти.

См. также

  • Прикладная статистика
  • Математическая статистика
  • Демография
  • Правовая статистика
  • Статистика запросов
  • Центральное статистическое управление
  • Ложь, наглая ложь и статистика

Примечания

  1. Малая советская энциклопедия. — М.: Советская энциклопедия, 1960. — Т. 8. — С. 1090.
  2. Райзберг Б. А., Лозовский Л. Ш., Стародубцева Е. Б. Современный экономический словарь. 5-е изд., перераб. и доп. — М.: ИНФРА-М, 2007. — 495 с. — (Б-ка словарей «ИНФРА-М»)
  3. Лекция по статистике — Предмет и метод статистики
  4. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина «статистика». — Москва: МГУ, 1972.
  5. Чупров А. А. Вопросы статистики. — М.: Госстатиздат ЦСУ СССР, 1960.
  6. Никитина Е. П., Фрейдлина В. Д., Ярхо А. Коллекция определений термина «статистика»
  7. Гнеденко Б.В. Очерк по истории теории вероятностей. — Москва: УРСС, 2001.
  8. Клейн Ф. Лекции о развитии математики в XIX столетии. Часть I. — Москва, Ленинград: Объединенное научно-техническое издательство НКТП СССР, 1937.
  9. Плошко Б.Г., Елисеева И.И. История статистики: Учеб. пособие. — Москва, Ленинград: Финансы и статистика, 1990.
  10. Huff, Darrell, How to Lie With Statistics, WW Norton & Company, Inc. New York, NY, 1954. ISBN 0-393-31072-8
  11. Warne, R. Lazo, M., Ramos, T. and Ritter, N. (2012). Statistical Methods Used in Gifted Education Journals, 2006—2010. Gifted Child Quarterly, 56(3) 134—149. doi: 10.1177/0016986212444122
  12. 1 2 Encyclopedia of Archaeology. — Credo Reference: Oxford: Elsevier Science, 2008.
  13. 1 2 Cohen, Jerome B. (December 1938). «Misuse of Statistics». Journal of the American Statistical Association 33 (204): 657-674. Проверено 19 September 2012.
  14. Freund, J. F. (1988). «Modern Elementary Statistics». Credo Reference. Проверено 21 September 2012.
  15. Mark Twain Chapters from My Autobiography. North American Review. Project Gutenberg (7 сентября 1906). Архивировано из первоисточника 7 апреля 2012. Проверено 23 мая 2007.

Литература

  1. Орлов А. И. Прикладная статистика. Учебник. — М.: Экзамен, 2006. — 671 с.
  2. Норман Дрейпер, Гарри Смит. Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — С. 912. — ISBN 0-471-17082-8

Ссылки

П:wikt:q:commons:
Портал «Статистика»
Статистика в Викисловаре?
Статистика в Викицитатнике?
Статистика на Викискладе?
Проект «Статистика»
  • Федеральная служба государственной статистики Российской Федерации — Росстат
  • Государственный комитет статистики Украины (укр.)
  • US Census Bureau центральный статистический орган США — Бюро переписи США (англ.)
  • Русскоязычные статистические рекомендации международных организаций, размещенные в сети Интернет
Wiki letter w.svg Для улучшения этой статьи желательно?:
  • Добавить иллюстрации.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
 Просмотр этого шаблона Статистические показатели Описательная
статистика Статистический
вывод и
проверка
гипотез Корреляция
Непрерывные
данные
Коэффициент сдвига Среднее (Арифметическое, Геометрическое, Гармоническое) · Медиана · Мода · Размах
Вариация Ранг · Среднеквадратическое отклонение · Коэффициент вариации · Квантиль (Дециль, Процентиль/Перцентиль/Центиль)
Моменты Математическое ожидание · Дисперсия · Асимметрия · Эксцесс
Дискретные
данные
Частота · Таблица контингентности
Статистический
вывод
Доверительный интервал (Частотная вероятность) · Достоверный интервал (Байесовский вывод) · Статистическая значимость · Мета-анализ
Планирование
эксперимента
Генеральная совокупность · Планирование выборки · Районированная выборка · Репликация · Группировка · Чувствительность и специфичность
Объём выборки Статистическая мощность · Мера эффекта · Стандартная ошибка
Общая оценка Байесовская оценка решения · Метод максимального правдоподобия · Метод моментов нахождения оценок · Оценка минимального расстояния · Оценка максимального интервала
Статистические
критерии
Z-тест · t-критерий Стьюдента · Критерий Фишера · Критерий Пирсона (Хи-квадрат) · Критерий согласия Колмогорова · Тест Вальда · U-критерий Манна — Уитни · Критерий Уилкоксона · Критерий Краскела — Уоллиса · Критерий Кохрена · Критерий Лиллиефорса
Анализ выживания Функция выживания · Оценка Каплана — Мейера · Логранк-тест · Интенсивность отказов · Пропорциональная модель опасностей
Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания
Линейные модели Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ
Регрессия Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия
Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами
Категория:
  • Статистика

Wikimedia Foundation. 2010.

dic.academic.ru

Статистические методы это:

Статистические методы

Статисти́ческие ме́тоды — методы анализа статистических данных. Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.

Содержание

  • 1 Классификация статистических методов
  • 2 Прикладная статистика
  • 3 Вероятностно-статистическое моделирование
  • 4 Статистический анализ конкретных данных
  • 5 Перспективы развития
  • 6 Литература
  • 7 Смотри также

Классификация статистических методов

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика

Прикладная статистика — это наука о том, как обрабатывать данные произвольной природы. Математической основой прикладной статистики и статистических методов анализа является теория вероятностей и математическая статистика.

Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.

В простейшей ситуации статистические данные — это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат — числа, а часть — качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы — образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных — числовые и нечисловые. Соответственно прикладная статистика разбивается на две части — числовую статистику и нечисловую статистику.

Числовые статистические данные — это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки — это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные — это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. [2]).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел — продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы — существенно иной, чем для данных в виде чисел, векторов и функций.

Вероятностно-статистическое моделирование

При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине, социологии и маркетинге. Они часто объединяются вместе под названием «выборочные исследования».

Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов — в выборочных исследованиях речь обычно идет о сотнях, а в экспертных — о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.

Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.

Статистический анализ конкретных данных

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).

Перспективы развития

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

Литература

1. Орлов А. И. Прикладная статистика. Учебник. — М.: Экзамен, 2006. — 671 с.

2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. — М.: Мир, 1975. — 500 с.

3. Крамер Г. Математические методы статистики. — М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). — 648 с.

4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. — М.: Наука, 1969. — 512 с.

6. Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — С. 912. — ISBN 0-471-17082-8

Смотри также

  • Математическая статистика
  • Прикладная статистика
  • Список статистиков
  • Статистика
  • Теория принятия решений
  • Эконометрика

Wikimedia Foundation. 2010.

dic.academic.ru

Статистика (значения)

Логотип Викисловаря В Викисловаре есть статья «статистика»

Математика

  • Статистика — отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных) данных.
  • Математическая статистика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
  • Статистика (в узком смысле) — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения.

Физика

  • Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности).
  • Статистика Бозе — Эйнштейна
  • Статистика Ферми — Дирака
  • Статистика Максвелла — Больцмана

ru.wikipedia.org

Читайте также