Вихревое электрическое поле определение

Вихревое электрическое поле

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

электростатическое поле

индукционное электрическое поле ( вихревое электр. поле )

1. создается неподвижными электр. зарядами

1. вызывается изменениями магнитного поля

2. силовые линии поля разомкнуты - -потенциальное поле

2. силовые линии замкнуты - - вихревое поле

3. источниками поля являются электр. заряды

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0.

4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Вихревые токи

Индукционные токи в массивных проводниках называюттоками Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало.Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах - магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

- нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

- это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией. Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны). В результате Л1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток ( стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле . Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

 

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды ( возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Среди всех учебных дисциплин физика – наиболее поддающийся компьютеризации предмет. Информационные технологии можно использовать для изучения теоретического материала, тренинга, в качестве средства моделирования и визуализации и т.д. Выбор зависит от целей, задач и этапа урока (объяснение, закрепление, повторение материала, проверка знаний и др.).

Обучая детей физике, мы наблюдаем понижение интереса к предмету, а вместе с этим понижение уровня знаний. Эту проблему я объяснила недостаточностью наглядного материала, отсутствием оборудования, сложностью самого предмета. Возникшие проблемы связаны и с бурно и непрерывно растущим объемом человеческих знаний. В условиях, когда каждые несколько лет объем информации удваивается, классический учебник и преподаватель неизбежно становятся поставщиками устаревших знаний.  Но также я отметила и то, что число детей, умеющих пользоваться компьютером, стремительно растет, и эта тенденция будет ускоряться независимо от парадигмы школьного образования. Для меня встал вопрос, а почему бы не использовать новые педагогические возможности компьютера  как средства обучения.  

Компьютер для обучающихся – как источник получения новой информации и как инструмент интеллектуальной и в целом – познавательной деятельности. Работа на компьютере может (и должна) развивать также такие личностные качества, как рефлексивность, критичность к информации, ответственность, способность к принятию самостоятельных решений, наконец, толерантность и креативность, коммуникативные умения.

Компьютер для учителя – современное средство решения дидактических задач организации новых форм развивающего обучения.

Отметим общее значение  компьютеров в образовательном процессе. Они:

  • Вписываются в рамки традиционного обучения.

  • Используются с успехом на различных по содержанию и организации учебных и внеклассных занятиях.

  • Способствуют активному включению обучаемого в учебно-воспитательный процесс, поддерживают интерес.

Дидактические особенности компьютера:

  • Информационная насыщенность.

  • Возможность преодолевать существующие временные и пространственные границы.

  • Возможность глубокого проникновения в сущность изучаемых явлений и процессов.

  • Показ изучаемых явлений в развитии, динамике.

  • Реальность отображения действительности.

  • Выразительность, богатство выразительных приемов, эмоциональная насыщенность.

Такое богатство возможностей компьютера позволяет внимательнее отнестись к изучению его в роли нового дидактического средства.

При проведении уроков физики могут применяться следующие виды ИКТ:

  • мультимедиа презентации,

  • видеоролики и видеофрагменты,

  • анимации, моделирующие физические процессы,

  • электронные учебники,

  • обучающие программы,

  • программы-тренажеры (для подготовки к ЕГЭ),

  • работа с интернет-сайтами

  • физическая лаборатория L-micro.

При проведении уроков самой распространенной формой применения ИКТ является мультимедиа презентация. Этот вид сопровождения урока позволяет акцентировать внимание на самых главных элементах изучаемого материала, включить анимации и видеофрагменты. Кроме того мультимедиа-презентации применяются обучающимися, при выступлении с докладами и сообщениями или при защите исследовательских работ. При подготовке презентации к уроку необходимо учитывать следующие особенности:

  • презентация должна быть наглядная, слайд не должен содержать много текста, текст должен быть крупным и удобночитаемым;

  • презентация должна быть иллюстрирована: содержать рисунки, фотографии, схемы;

  • количество слайдов должно быть ограничено (15-20 слайдов);

  • презентация не должна вызывать неприятных ощущений, вызванных динамическим воспроизведением и сменой кадров, или цветового дискомфорта;

  • самая важная информация должна быть размещена на первых и последних слайдах.

При создании презентации следует помнить, что она является сопровождением выступления, доклада, или урока, а не заменяет его. Нередко обучающиеся при выполнении презентаций пытаются разместить в ней всю информацию, роль учителя в данной ситуации заключается в том, чтобы корректировать содержание презентации и ее восприятие. Это является наиболее актуальным при защите проектов, конкурсных и исследовательских работ. Во всех конкурсах при оценивании работы учитывается наглядность, которая в большинстве своем представляет мультимедиа презентацию.

Другим видом ИКТ применяемым при обучении физике является использование электронных пособий. Электронные учебники и обучающие программы целесообразнее использовать при выполнении домашних работ и самостоятельной работе обучающихся, как и при работе с любой учебной литературой, в этом случае необходимо тщательно продумать и конкретизировать задания для обучающихся.

Программы-тренажеры выступают как самостоятельный продукт, который позволяет отработать изученный материал, выявить проблемы, с которыми учащиеся сталкиваются при изучении теоретического материала.

Особую роль онлайн-тесты играют в подготовке к государственной итоговой аттестации. Ученик видит результат практически сразу и реально оценивает свои возможности.

Важным элементом применения ИКТ в преподавании физики является работа с интерактивными моделями, которые представлены в таких продуктах как «Живая физика», «Открытая физика». Практически все модели позволяют показывать опыты при объяснении нового материала. Работа с такого рода программами позволяет заглянуть вглубь явления, рассмотреть процессы, которые невозможно наблюдать в «живом» эксперименте. При использовании моделей для демонстраций можно в качестве помощника привлечь кого-нибудь из обучающихся, так как работать за компьютером и одновременно давать необходимые пояснения классу достаточно сложно. Кроме того, самостоятельная работа обучающихся с этими программами способствует развитию познавательной активности.

Особый интерес вызывает у обучающихся проведение на уроках физики виртуальных лабораторных работ. Обучающиеся могут ставить необходимые компьютерные эксперименты для проверки собственных соображений при ответе на вопросы или решении задач. Разумеется, компьютерная лаборатория не может заменить настоящую физическую лабораторию. Тем не менее, выполнение компьютерных лабораторных работ требует определенных навыков, характерных и для реального эксперимента - выбор начальных условий, установка параметров опыта и т. д.

Одну из ключевых ролей в преподавании физики играет физическая лаборатория L-micro. Применение компьютера как измерительного инструмента позволяет расширить границы школьного физического эксперимента и проводить физические исследования.

При подготовке к урокам физики необходимо помнить о стремительном развитии науки и техники. Владея новой информацией о достижениях современной физики в той или иной области, учитель не только подчеркивает актуальность и необходимость изучения физики в школе, но и развивает познавательную активность школьника. При этом целесообразно поручить обучающимся поиск информации о современных достижениях в данной области физики. Как правило, школьники творчески подходят к процессу поиска и нередко, увлекаясь сбором информации, увлекаются и самой проблемой, что может перерасти в самостоятельное исследование. Однако следует обратить внимание школьников на поиск достоверных источников информации. Одним из таких Интерент-источников является популярный сайт о фундаментальной науке elementy.ru.

Интернет-сайт может быть не только источником информации, но и самостоятельным обучающим продуктом. Так сайт elementy.ru, кроме информационных разделов содержит и интерактивные плакаты, при работе с которыми учащиеся имеют возможность не только увидеть схемы сложнейших технических устройств, но и «заглянуть» вовнутрь, изменять условия работы и изучить теоретические основы процессов. Работа с такими плакатами позволяет показать практическую значимость изучаемых на уроках физики законов.

Включая в процесс обучения физике элементы ИКТ, учитель не только развивает познавательную активность обучающихся, но и самосовершенствуется. Для активного применения ИКТ на уроках учителю необходимо овладеть определенными умениями:

  • обрабатывать текстовую, цифровую, графическую и звуковую информацию при помощи соответствующих редакторов для подготовки дидактических материалов;

  • создавать слайды по данному учебному материалу, используя редактор презентаций (MS PowerPoint), продемонстрировать презентацию на уроке;

  • использовать имеющиеся готовые программные продукты по своей дисциплине;

  • организовать работу с электронным учебником на уроке;

  • осуществлять поиск информации в сети Интернет в процессе подготовки к урокам и внеклассным мероприятиям;

  • организовывать работу с обучающимися по поиску необходимой информации в глобальной сети непосредственно на уроке;

  • работать на уроке с материалами Web-сайтов.

В заключении отмечу, что в современных условиях возникает педагогическая задача противостоять чрезмерному внедрению ИКТ в процесс преподавания физики, чтобы красочными иллюстрациями и моделями не затмить истинный экспериментальный характер физической науки, не забыть «живой» эксперимент.

StudFiles.ru

Соленоидальное векторное поле

Определение

Векторное поле называется соленоидальным или вихревым, если через любую замкнутую поверхность S его поток равен нулю:

∫ S a → ⋅ d s → = 0 {\displaystyle \int \limits _{S}{\vec {a}}\cdot {\vec {ds}}=0} .

Если это условие выполняется для любых замкнутых S в некоторой области (по умолчанию - всюду), то это условие равносильно тому, что равна нулю дивергенция векторного поля a → {\displaystyle {\vec {a}}} :

d i v a → ≡ ∇ ⋅ a → = 0 {\displaystyle \mathrm {div} \,{\vec {a}}\equiv \nabla \cdot {\vec {a}}=0}

всюду на этой области (подразумевается, что дивергенция всюду на этой области существует). Поэтому соленоидальные поля называют также бездивергентными.

Для широкого класса областей это условие выполняется тогда и только тогда, когда a → {\displaystyle {\vec {a}}} имеет векторный потенциал, то есть существует некое такое векторное поле A → {\displaystyle {\vec {A}}} (векторный потенциал), что a → {\displaystyle {\vec {a}}} может быть выражено как его ротор:

a → = ∇ × A → ≡ r o t A → . {\displaystyle {\vec {a}}=\nabla \times {\vec {A}}\equiv \mathrm {rot} \,{\vec {A}}.}

Иначе говоря, поле является вихревым, если оно не имеет источников. Силовые линии такого поля не имеют ни начала, ни конца, и являются замкнутыми. Вихревое поле порождается не покоящимися зарядами (источниками), а изменением связанного с ним поля (например, для электрического поля порождается изменением магнитного). Поскольку в природе не существует магнитных зарядов, то магнитное поле всегда является вихревым, и его силовые линии всегда замкнуты. Силовые линии постоянного магнита, несмотря на то, что выходят из его полюсов (словно имеют источники внутри), на самом деле замыкаются внутри магнита. Поэтому, разрезав магнит надвое, не удастся получить два отдельных магнитных полюса.

Примеры

  • Поле вектора магнитной индукции (следует из уравнений Максвелла, а конкретнее — из теоремы Гаусса для магнитного поля).
  • Поле скорости несжимаемой жидкости (следует из уравнения неразрывности при ∂ ρ / ∂ t = 0 {\displaystyle \partial \rho /\partial t=0} ).
  • Электрическое поле в областях, где отсутствуют источники (заряды). Для соленоидальности поля E необходимо отсутствие (или взаимная компенсация) свободных и связанных зарядов. Для соленоидальности D достаточно отсутствия только свободных зарядов.
  • Поле вектора плотности тока соленоидально при отсутствии изменения плотности заряда со временем (тогда соленоидальность плотности тока следует из уравнения непрерывности).

Этимология

Слово соленоидальное происходит от греческого соленоид (σωληνοειδές, sōlēnoeidēs), означающее «трубообразно» или «как в трубе», содержащего слово σωλην (Solen) - труба. В данном контексте это означает фиксацию объема для модели текущей жидкости, отсутствие источников и стоков (как при течении в трубе, где новая жидкость не появляется и не пропадает).

Формула Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её.

ru.wikipedia.org

Описание установки

В данной работе используются следующие приборы (см. рис.13.1, б и 13.2, а): неоновая лампа N; источник питания U0; вольтметр V; амперметр А; осциллограф, служащий для наблюдения формы релаксационных колебаний и измерения параметpoв сигнала.

Задание

1. Собрать схему согласно рис.13.1, в. МеняяU0, снять прямую и обратную ветви ВАХ неоновой лампы. Определить Uз и Uг. Оценить Ri горящей лампы по двум экспериментальным точкам.

2. Собрать схему согласно рис.13.2, а. Получить на экране осциллографа устойчивую картину релаксационных колебаний и зарисовать ее в рабочий журнал.

3. Измерить с помощью осциллографа амплитуду колебаний.

4. Исследовать зависимости периода колебаний Т от параметров схемы:

а) снять зависимость T от R при фиксированных U0 = U01 и C1;

б) снять зависимость T от C при фиксированных U0 U01 и R1.

5. Использовать собранный релаксационный генератор в качестве генератора развертки, для чего перевести осциллограф в двухканальный режим работы «X – Y» и подать на второй канал синусоидальный сигнал с генератора ГСК. Подобрав частоту синусоидального сигнала ГСК, получить устойчивую картину на экране осциллографа и зарисовать ее в лабораторном журнале. Отключив релаксационный генератор, тот же сигнал ГСК подать на первый канал осциллографа и, включив генератор развертки, получить устойчивую картину развертки сигнала на экране, зарисовать ее в лабораторном журнале. Объяснить ка­чественное различие картинок.

6. Построить график ВАХ неоновой лампы. По графику определить внутреннее сопротивление горящей неоновой лампы Ri = = dU/dI для U, несколько меньших чемUз.

7. Построить графики зависимости T(R),T(C). На этих же графиках построить теоретические зависимости, используя формулу (13.2).

Контрольные вопросы

1. Что такое релаксационные колебания?

2. Расскажите об особенностях вольтамперной характерис­тики неоновой лампы.

3. Что такое внутреннее сопротивление лампы и как его найти по вольтамперной характеристике?

4. Выведите формулу (13.1).

5. Объясните принцип действия релаксационного генератора, изображенного на рис.13.2, а.

6. Какую форму имеют релаксационные колебания в данной работе?

7. Каким должно быть соотношение между сопротивлением и внутренним сопротивлением горящей и негорящей неоновой лампы, чтобы период колебаний определялся формулой (13.2)?

8. Каким способом можно менять период колебаний?

9. Каким образом можно изменить амплитуду колебаний?

10. Из каких соображений выбирается U в генераторе?

11. Какую форму колебаний имеет генератор развертки в осциллографе? Можно ли в качестве генератора развертки использовать релаксационный генератор? Как искажается при этом форма исследуемого сигнала и почему?

Р а б о т а 14 вихревое электрическое поле

Цель:изучение свойств вихревого электрического поля.

Введение

Из уравнений Максвелла следует, что изменяющееся со временем магнитное поле порождает электрическое. Соответствующее уравнение записывается в виде

, (14.1)

где E — вектор напряженности электрического поля, B — вектор магнитной индукция. Это же уравнение в интегральном виде применительно к соленоиду с использованием цилиндрической системы координат выглядит так:

, (14.2)

где — окружная компонента напряженности электрического поля;— осевая компонента магнитной индукции, а интегралы берутся по замкнутому контуруl и по поверхности S, опирающейся на этот контур.

В работе используется вихревое электрическое поле соленоида, по которому течет переменный электрический ток. Измерения вихревого электрического поля производятся в перпендикулярном к оси соленоида сечении, проходящем через его середину. Длина соленоида существенно больше его диаметра, поэтому в первом приближении можно считать, что мы имеем дело с бесконечно длинным соленоидом.

Известно, что магнитное поле внутри бесконечного соленоида однородно и его магнитная индукция определяется по формуле:

, (14.3)

где  — относительная магнитная проницаемость вещества (для воздуха  = 1,0000004); 0 = 1,26 · 10–6 Гн/м — магнитная постоянная; n число витков соленоида, приходящихся на единицу его длины, I — сила тока в соленоиде (рассматривается квазистационарный ток). Вне соленоида магнитная индукция пренебрежимо мала.

Уравнение (14.2) существенно упрощается, если в качестве поверхности S взять круг радиусом r, центр которого находится на оси соленоида и плоскость перпендикулярна к этой оси. В этом случае L—это окружность радиусом r. Так как величина Bz/t однородна внутри бесконечного соленоида и практически равна нулю вне его, то правый интеграл равен:

где R— радиус соленоида.

Интеграл в левой части уравнения (14.2) в силу осевой симметрии задачи равен E  2r. В результате после несложных преобразований получим для модуля напряженности вихревого электрического поля следующее выражение:

(14.4)

Поскольку Bz/t не зависит от r, то напряженность вихревого электрического поля пропорциональна расстоянию r от оси соленоида при R и обратно пропорциональна r при  R.

В случае, когда ток соленоида меняется по синусоидаль­ному закону

StudFiles.ru

Физика определение

Вихревое электрическое поле - это

Ксюлёнок хавелева

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура,
при этом если проводник разомкнут, то на его концах возникает разность потенциалов;
если проводник замкнут, то в нем наблюдается индукционный ток. Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии
от электростатического поля.

Использование вихревых токов: нагрев и плавка металлов в вакууме;
демпферы в электроизмерительных приборах.

Вредное действие вихревых токов: потери энергии в сердечниках трансформаторов и генераторов
из-за выделения большого количества тепла.

Читайте также