/ Основные понятия и аксиомы стереометрии
"Основные понятия и аксиомы стереометрии. Параллельность прямых и плоскостей"
Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве.
Слово «стереометрия» происходит от греческих слов «στερεοσ» — объемный, пространственный и «μετρεο» — измерять.
Простейшие фигуры в пространстве: точка, прямая, плоскость.
Плоскость. Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны. |
|
На рисунках плоскости изображаются в виде параллелограмма или в виде произвольной области и обозначаются греческими буквами α, β, γ и т.д. Точки А и В лежат в плоскости β (плоскость β проходит через эти точки), а точки M, N, P не лежат в этой плоскости. Коротко это записывают так: А ∈ β, B ∈ β, |
|
Аксиомы стереометрии и их следствия
Аксиома 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна. |
|
Аксиома 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую). |
|
Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются. |
|
Аксиома 3. Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. В таком случае говорят, плоскости пересекаются по прямой. Пример: пересечение двух смежных стен, стены и потолка комнаты. |
|
Некоторые следствия из аксиом
Теорема 1. Через прямую a и не лежащую на ней точку А проходит плоскость, и притом только одна. |
|
Теорема 2. Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна. |
|
Параллельные прямые в пространстве
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна. |
|
Лемма о пересечении плоскости параллельными прямыми. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость. |
|
Теорема о трех прямых в пространстве. Если две прямые параллельны третьей прямой, то они параллельны (если a∥c и b∥c, то a∥b). |
|
Параллельность прямой и плоскости
Прямая и плоскость называются параллельными, если они не имеют общих точек.
Признак параллельности прямой и плоскости Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости. |
|
Теорема. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. Теорема. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости. |
|
Взаимное расположение прямых в пространстве
|
|
|
Пересекающиеся прямые: лежат в одной плоскости, имеют одну общую точку. |
Параллельные прямые: лежат в одной плоскости, не имеют общих точек (не пересекаются) |
Скрещивающиеся прямые: не лежат в одной плоскости, не имеют общих точек (не пересекаются) |
StudFiles.ru
Стереометрия
Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, объёмный, пространственный» и μετρέω, «метрео» — «измеряю») — раздел геометрии, в котором изучаются свойства фигур в пространстве. Основными (простейшими) фигурами в пространстве являются точки, прямые и плоскости. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путём рассмотрения различных плоскостей, в которых выполняются планиметрические законы.
Не стоит путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур).
Аксиомы стереометрии
- На каждой прямой и в каждой плоскости имеются по крайней мере две точки.
- В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии.
- Через любые три точки, не принадлежащие одной прямой, можно провести плоскость, и притом только одну.
- Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
- Если две точки прямой лежат на одной плоскости, то все точки данной прямой лежат в этой плоскости.
- Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
- Любая плоскость α разбивает множество не принадлежащих ей точек пространства на два непустых множества так, что:
- любые две точки, принадлежащие разным множествам, разделены плоскостью α;
- любые две точки, принадлежащие одному и тому же множеству, не разделены плоскостью α.
- Расстояние между любыми двумя точками пространства одно и то же на любой плоскости, содержащей эти точки.
Многогранник
Многогранник представляет собой тело, поверхность которого состоит из конечного числа плоских многоугольников. Эти многоугольники называются гранями многогранника, а стороны и вершины многоугольников называются соответственно ребрами и вершинами многогранника. Многогранники могут быть выпуклыми и невыпуклыми . Выпуклый многогранник расположен по одну сторону относительно плоскости, проходящей через любую его грань .
Литература
- В. В. Прасолов, И. Ф. Шарыгин. Задачи по стереометрии. — М.: Наука, 1989.
- И. Ф. Шарыгин. Задачи по геометрии (стереометрия). М.: Наука, 1984. — 160 с. (Библиотечка «Квант», Выпуск 31).
![]() |
Это заготовка статьи по геометрии. Вы можете помочь проекту, дополнив её. |

Портал «Наука» | ||||||
Основания математики Теория множеств Математическая логика алгебра логики | ||||||
Теория чисел (арифметика) | ||||||
Алгебра Общая алгебра
|
||||||
Анализ Классический анализ Теория функций Дифференциальные и интегральные уравнения
|
||||||
Геометрия и топология Геометрия Топология
|
||||||
Дискретная математика
|
||||||
Прикладная математика
|
||||||
|
ru.wikipedia.org
Какие основные понятия и аксиомы стереометрии
Грустный мир
А1. Через любые три точки не лежащие на одной прямой проходит плоскость и проитом тока одна.
А2 Если 2 точ прямой лежат в плоскости то все точ. этой прямой лежат в плоскости.
А3 Если две плоскости имеют общую точку, то они имеют общию прямую на которой лежать все общие точки.
Следствия:
1. Через прямую и нележащию на ней точку проходит одна плоскость.
2. Через две пересекающиеся прямые проходит плоскость и притом тока одна.
Юрий малихов
Тут нужно уточнить. Любое из этих трех высказываний можно взять исходно за аксиому. Тогда остальные два будут теоремами, доказываемыми на основе взятой аксиомы:
1. Через любые три точки не лежащие на одной прямой проходит плоскость и притом тока одна.
2. Через прямую и нележащию на ней точку проходит одна плоскость.
3. Через две пересекающиеся прямые проходит плоскость и притом тока одна.
Алексей рябчиков
В планиметрии основными фигурами были точки и прямые. В стереометрии наряду с ними рассматривается еще одна основная фигура - плоскость. Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.
Как и ранее, точки будем обозначать прописными латинскими буквами А, В, С и т. д., а прямые - строчными латинскими буквами а, Ь, с И т. д. или двумя прописными латинскими буквами АВ, CD и т. д. Плоскости будем обозначать греческими буквами а, Р, Y и т. д. На рисунках плоскости изображаются в виде параллелограмма или в виде произвольной области .
Основные свойства точек, прямых и плоскостей, касающиеся их взаимного расположения, выражены в аксиомах. Вся система аксиом стереометрии состоит из ряда аксиом, большая часть которых нам знакома по курсу планиметрии. Мы сформулируем лишь три аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве. Ниже они обозначены А:, А1, А2. A3.
А1: Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Плоскость, проходящую через точки А, В и С, не лежащие на одной прямой, иногда называют плоскостью ABC. Отметим, что если взять не три, а четыре произвольные точки, то через них может не проходить ни одна плоскость. Иначе говоря, четыре точки могут не лежать в одной плоскости. Каждый знаком с таким наглядным подтверждением этого факта: если ножки стула не одинаковые по длине, то стул стоит на трех ножках, т. е. опирается на три "точки", а конец четвертой ножки (четвертая "точка") не лежит в плоскости пола, а висит в воздухе.
А2: Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
В таком случае говорят, что прямая лежит в плоскости или плоскость проходит через прямую.
Свойство, выраженное в аксиоме А2, используется для проверки "ровности" чертежной линейки. С этой целью линейку прикладывают краем к плоской поверхности стола. Если край линейки ровный (прямолинейный), то он всеми своими точками прилегает к поверхности стола. Если край неровный, то в каких-то местах между ним и поверхностью стола образуется просвет."
Из аксиомы А2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют только одну общую точку, то говорят, что они пересекаются .
А3: Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В таком случае говорят, что плоскости пересекаются по прямой. Наглядной иллюстрацией аксиомы А3 является пересечение двух смежных стен, стены и потолка классной комнаты.
Читайте также
Методы определения основного обмена
Определение понятия популяция человека в экологии
Соответствие между понятиями и их определениями
- Дать определение понятию индустриализация
Российский законодатель дает определения понятию информация
Понятие и определение государства тгп
Магнитные цепи основные понятия и определения
Основные понятия и определения теории графов
Техническая механика основные понятия и определения
- Основные подходы к определению сущности права
Дайте определение понятию авария
Болезнь определение